
FlashLight:

A Dynamic Detector of Shared State, Race Conditions,

and Locking Models in Concurrent Java Programs

THESIS

Scott C. Hale, Captain, USAF

AFIT/GCS/ENG/06-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government

AFIT/GCS/ENG/06-08

FlashLight:

A Dynamic Detector of Shared State, Race Conditions,

and Locking Models in Concurrent Java Programs

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Scott C. Hale, B.S.C.S.

Captain, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/06-08

FlashLight:

A Dynamic Detector of Shared State, Race Conditions,

and Locking Models in Concurrent Java Programs

Scott C. Hale, B.S.C.S.

Captain, USAF

Approved:

/signed/ 02 Mar 2006

Maj Robert P. Graham, Jr., PhD
(Chairman)

date

/signed/ 02 Mar 2006

Lt Col T.J. Halloran (Member) date

/signed/ 02 Mar 2006

Dr. Aaron Greenhouse (Member) date

AFIT/GCS/ENG/06-08

Abstract

Concurrent Java programs are difficult to understand and implement correctly.

This difficultly leads to code faults that are the source of many real–world reliability

and security problems. Many factors contribute to concurrency faults in Java code;

for example, programmers may not understand Java language semantics or, when

using a Java library or framework, may not understand that their resulting program

is concurrent.

This thesis describes a dynamic analysis approach, implemented in a tool named

FlashLight, that detects shared state and possible race conditions within a program.

FlashLight illuminates the concurrency within a program for programmers that are

wholly or partially “in the dark” about their software’s concurrency. FlashLight

also works in concert with the Fluid assurance tool to propose Greenhouse-style [8]

lock policy models based upon a program’s observed locking behavior. After review

by a programmer to ensure reasonableness, these models can be verified by the Fluid

assurance tool. Our combination of a dynamic tool with a program verification system

focused on concurrency fault detection and repair is, to the best of our knowledge,

novel and is the primary contribution of this research.

We applied FlashLight to several concurrent Java programs, including a large

(∼100kSLOC) commercial web application server. Our case study experiences in-

duced us to improve FlashLight to (1) allow the programmer to specify interesting

time quantums (e.g., this is the start up phase of my program) and (2) support the

common Java programming idiom of not locking shared state during object construc-

tion. Both improvements help to reduce false positives. FlashLight introduces an

overhead of roughly 1.7 times the original execution time of the program. The most

significant limitation of FlashLight is that it is not fully integrated into the Fluid

assurance tool with respect to the user experience.

iv

To my wife

v

Acknowledgements

I would like to thank to my faculty adviser, Maj Robert Graham, for his

insight and assistance during this thesis effort. I would also like to show my sincere

appreciation to my committee members, Lt Col Timothy Halloran and Dr. Aaron

Greenhouse. Their guidance and support throughout the course of this thesis made

the effort possible.

Scott C. Hale

vi

Table of Contents
Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . x

List of Tables . xii

List of Abbreviations . xiii

I. Introduction . 1
1.1 Troubles With Threads 1

1.1.1 In the Dark . 2
1.2 This Thesis . 3
1.3 Tool Use Overview . 4
1.4 Motivating Example: A “Maze” of Concurrency 5

1.4.1 Darkness . 7
1.4.2 Shining the FlashLight 9

1.4.3 Eliminating the Race 11

1.4.4 FlashLight Proposes a Lock Policy 11

1.4.5 Verifying the Lock Policy 12

1.5 Case Studies . 15
1.6 Outline . 16

II. Definitions and Prior Work . 17
2.1 Definitions . 17

2.1.1 What is Shared State? 17
2.1.2 What is a Race Condition? 19
2.1.3 Java Mapping 21

2.2 Dynamic Analysis Race Condition Detection Algorithms 21

2.2.1 Happens-Before 23

2.2.2 Lock-Set . 25
2.2.3 O’Callahan–Choi Hybrid 28

2.3 Model Checking Techniques for Race Condition Detection 29

2.4 Static Analysis Techniques for Race Condition Detection 30

2.5 Engineering Dynamic Analysis using AOP 31

2.5.1 An Overview of AOP 31
2.5.2 Other uses of AOP for Dynamic Analysis 32

vii

Page

III. Tool Use . 34
3.1 Customizing FlashLight Instrumentation 34

3.1.1 Setting Up FlashLight 35

3.1.2 Tuning Target Program Instrumentation 38

3.2 Running the Target Program 41

3.3 Examining FlashLight Reports 41

3.4 Summary . 46

IV. Tool Engineering . 48

4.1 The Instrumentation . 48
4.1.1 Detecting Field Reads and Writes 50

4.1.2 Tracking Locks 50

4.1.3 Tracking Object and Class Initialization 52

4.2 The Data Store . 53
4.2.1 Instrumentation–Store Interaction 54
4.2.2 Object Model 58

4.2.3 Store . 61
4.2.4 FieldInstance 61
4.2.5 Quantum . 61

4.2.6 PerThreadData 62
4.2.7 StackTraceInstance 62
4.2.8 ObjectLocks . 63

4.2.9 StoreOutput . 63

4.2.10 LocksHeld . 63
4.3 The Analysis . 63

4.3.1 Shared State Algorithm 64

4.3.2 Lock-Set Algorithm 64

4.3.3 Lock-Set Support for Java Programming Idioms 65

4.4 Summary . 66

V. Case Studies . 67
5.1 FleetBaron . 69

5.1.1 Lessons Learned from FleetBaron 69
5.2 jEdit . 72

5.2.1 Lessons Learned from jEdit 72

5.2.2 Verifying a jEdit Locking Model 74

5.3 Commercial Case Study 76

5.4 Runtime Overhead . 78
5.5 Summary . 79

viii

Page

VI. Conclusion . 81
6.1 Summary of Contributions 81

6.1.1 Case Studies . 82
6.2 Looking Ahead . 82

Bibliography . 83

ix

List of Figures
Figure Page

1.1. The Maze ADT User Interface 6

1.2. Concurrent Modification Error Generated by the Maze 7

1.3. Original Maze Class . 8

1.4. Quantum Definition for the Maze 8

1.5. Potential Race Found in the Maze 9

1.6. Stack Trace for Thread AWT-EventQueue-0 Accessing Field c . 10

1.7. Stack Trace for Thread main Accessing Field c 10

1.8. FlashLight Proposes a Lock Policy 12

1.9. Synchronized Maze Class . 13

1.10. Fluid Assurance Tool . 14

2.1. Relationship Between Sharable Program State 20

2.2. False Negative Created by Happens-Before Detection 24

2.3. Eraser’s State Machine for Memory Locations 27

3.1. Invoking the FlashLight Source Code Rewriter 36

3.2. AspectJ-Specific Icons . 37

3.3. Structure of FlashLight Reports 42

3.4. Results Home Page . 42

3.5. Shared State Report . 43

3.6. Potential Race Condition Report 44

3.7. Proposed Lock Model Report 44

4.1. An Overview of FlashLight’s Components 48

4.2. Pointcuts Matching Field Reads and Writes 49

4.3. Advice for a Field Read . 49

4.4. Rewriting the RewriterDemo Class 51

4.5. Pointcuts and Advice for Lock Acquisition and Release 52

x

Figure Page

4.6. Initialization Pointcuts . 53

4.7. Initialization Field Write Advice 54

4.8. Class Diagram for the Store Package 59

4.9. Object Diagram of the Data Store for the Maze ADT Program 60

5.1. FleetBaron’s Player User Interface 68

5.2. Proposed Locking Model for Field yCoordinate 71

5.3. Program Initiation and Termination Aspects 73

5.4. Proposed Lock Policy for Class ReadWriteLock 75

xi

List of Tables
Table Page

2.1. Positive and Negative Aspects of Post-Mortem Dynamic Analysis

Race Condition Detection Algorithms 23

5.1. Run-Time Performance of FlashLight 78

xii

List of Abbreviations
Abbreviation Page

XML Extensible Markup Language 4

GUI Graphical User Interface 5

AOP Aspect-Oriented Programming 17

JVM Java Virtual Machine . 22

OUG Object Use Graph . 30

AJDT AspectJ Development Tools 35

JRE Java Runtime Environment 35

xiii

FlashLight:

A Dynamic Detector of Shared State, Race Conditions,

and Locking Models in Concurrent Java Programs

I. Introduction

1.1 Troubles With Threads

It is difficult to understand and implement Java concurrency. The query “Java

concurrency thread” on Amazon.com finds seven textbooks; the same query on the

ACM Digital Library finds 200 papers. The sheer number of technical books and

papers about Java concurrency testifies to the difficulty of engineering correct con-

current code. Why do we bother with this complexity? Concurrency makes our

software more responsive and allows us to take better advantage of available hard-

ware resources. There is a dark side to using concurrency to gain these advantages:

concurrent code often has subtle defects that can be maddening to track down and to

eliminate. Many factors contribute to defects in concurrent in Java code. Program-

mers may not understand Java language semantics, or even worse, when using a Java

library or framework, may not understand that their code is concurrent. Regardless of

the cause, faults in concurrent code can lead to race conditions: anomalous behavior

due to an unexpected program dependence on the relative timing of events. Avoiding

race conditions by holding locks during critical sections of code can unfortunately lead

to deadlock: a situation where two or more threads are unable to proceed because

each is waiting for one of the others to release a resource.1 These defects are difficult

to track down because they are effectively nondeterministic.

The Fluid project2 is dedicated to developing techniques that change this sit-

uation in a positive manner. This project includes researchers at Carnegie Mellon

1Our definitions for race condition and deadlock are adapted to the Java programming language
from the definitions at http://onlinedictionary.datasegment.com.

2http://www.fluid.cs.cmu.edu

1

University, the Air Force Institute of Technology, and the University of Milwaukee–

Wisconsin. The Fluid assurance3 tool is an Eclipse-based tool focused on the prac-

tical verification of mechanical (non-functional) design intent about Java code. This

specification focus differs from the traditional focus in much of the program verifica-

tion literature on functional properties—models of component input/output behavior.

Germane to our work, the Fluid assurance tool supports the specification and ver-

ification of how locks protect state within a Java program, which we refer to as a

lock policy. This technique, developed by Greenhouse [8, 9], has proved successful

in uncovering and correcting defects in open source, commercial, and governmental

software systems. The technique has also been judged practical and adoptable by

practicing programmers during several on-site case studies with commercial software

companies and Government organizations.

Our work, the development of the FlashLight tool to illuminate the concurrency

within a program, is a direct result of the observation that programmers are sometimes

“in the dark” about their software’s concurrency. This observation was made by

members of the Fluid project, to some degree, during all of the on-site case studies,

but was the most noticeable (as described below) during a Government on-site case

study.4

1.1.1 In the Dark. A troubling problem encountered during a Government

on-site case study was that programmers did not realize that significant portions of

their code were, in fact, concurrent. This made it difficult for them to gain value from

the Fluid assurance tool (in terms of defects identified and fixed) because the tool

requires the programmer to express lock policy models for it to verify. To help the

programmer get started, the tool scans the code and highlights concurrent constructs

within the code, e.g., threads being started or locks being acquired and subsequently

3We use the word assurance as a synonym for verification—proof that an implementation is
consistent with a precise behavioral specification or model.

4Personal communication with members of the Fluid project who participated in the on-site case
studies of commercial and governmental software systems.

2

released, for the programmer to examine. The intent is to signpost possible locations

in the code where expressing a lock policy model might be possible. We found,

however, that in code written by programmers “in the dark” about the concurrency

within their software, these static “signposts” to guide lock policy expression did not

exist. We posit, based upon informal discussions with the programmers participating

in the case study, two possible reasons:

• The concurrency was imposed by a third-party library (e.g., Swing) or a sep-

arately developed component and the programmer lacked an understanding of

the concurrency introduced by the library or component into his or her code.

• The programmer held the misconception that the Java language semantics au-

tomatically ensure race-free code.

We believe the problem of programmers being “in the dark” about concurrency

is more widespread in practice than one might at first believe. This opinion is based

upon our observation that these Java programmers are, in other respects, competent

and hardworking professionals and that the software systems they develop and main-

tain are considered mission critical to the Government organization that operates

them.

1.2 This Thesis

This thesis describes a dynamic analysis approach, implemented in a tool named

FlashLight, that detects shared state and possible race conditions within a pro-

gram. Based upon the program’s observed locking behavior, the tool also proposes

Greenhouse-style [8] lock policy models that can, after review by a programmer to

ensure reasonableness, be assured by the Fluid assurance tool. FlashLight is designed

to be synergistic with the Fluid assurance tool: it is another step toward the goal of

improving the quality of large real-world software system in a practical manner.

The combination of a dynamic tool with a static program verification system

focused on concurrency fault detection and repair is, to the best of our knowledge,

3

novel and is the primary contribution of this research. A secondary contribution of

this work is the extension of the lock-set analysis algorithm (discussed in Chapter II)

to use what we call quantums. Quantums allow the programmer to specify one or more

“interesting” periods of time during a program’s execution. For example, quantums

can be used to identify the “start up,” “steady state,” and “shut down” phases of a

program’s execution. Quantums allow the programmer to “focus” the tool on partic-

ular periods of the program’s execution which may suffer from intermittent failure or

be poorly understood.

1.3 Tool Use Overview

FlashLight instruments Java programs, monitors their execution by collecting

data about field use and held locks, and aggregates the run-time data to produce

reports for the programmer to examine. A programmer using FlashLight repeatedly

follows this process:

1. Customize the instrumentation. The programmer provides the tool with infor-

mation about his or her program. Specifically, the programmer notes when the

analysis should start and stop collecting data. Optionally, any quantums of time

he or she wishes to distinguish are specified. The programmer may also restrict

data collection to a subset of the program’s classes. Finally, based upon these

specifications, the programmer lets FlashLight weave required instrumentation

into their program.

2. Run the program. The programmer invokes a large test suite or puts the pro-

gram into any “production-like” situation he or she deems of interest. The goal

is to stimulate the execution of as many dynamic paths within the program

as possible so that FlashLight can produce the best possible results for the

programmer. FlashLight collects data as the program runs and creates several

XML files when the program exits.

4

3. Examine the reports. FlashLight produces a suite of web pages that the pro-

grammer can now examine to better understand the concurrency in his or her

program.

As is typical in almost any dynamic analysis, FlashLight only “sees” a subset of

all possible program execution paths. Its results are, therefore, incomplete. In terms

of reported shared state, the tool is sound, because the identification of shared state

does not require any understanding of the program’s functionality. Race condition

detection by FlashLight is unsound. This is because determination of a race condition

with respect to the semantics of the application depends upon having higher level,

application-specific semantic information that FlashLight lacks. Put another way,

FlashLight has no idea what the program’s intended functionality is, so it can’t be

sure if an observed interaction between threads is a race condition or programmer

intended behavior.

FlashLight uses the quantum specification provided by the programmer as a

surrogate for more detailed program design intent. FlashLight’s use of such coarse

design intent is intentional because any design intent we elicit from the programmer

has an expression cost. Asking a programmer on a deadline to pay too high of a cost,

in terms of their time, can cause the tool to be impractical.

1.4 Motivating Example: A “Maze” of Concurrency

As we have noted above, the primary hypothesis of this research is that pro-

grammers do not always fully understand the concurrency of their programs. In the

example we now present, the Swing library imposes concurrency upon an apparently

single-threaded program, Maze ADT.

The Maze ADT program is used at AFIT to instruct students about data struc-

tures and algorithms. The application has a graphical user interface (GUI) shown in

Figure 1.1 that is constructed using the Swing library.

5

Figure 1.1: The Maze ADT User Interface. The Maze ADT program used to demon-
strate algorithms for solving random mazes. Despite the use of double-buffering, the
original program appears to draw the path chosen by the algorithm in “fits and starts.”
This visual artifact is a symptom of the race condition in the original program code
shown in Figure 1.3.

6

Exception in thread "AWT-EventQueue-0"
java.util.ConcurrentModificationException

at java.util.LinkedList$ListItr.checkForComodification(Unknown Source)
at java.util.LinkedList$ListItr.next(Unknown Source)
at Maze.drawEntirePath(Maze.java:35)
at Maze.paint(Maze.java:27)

at ...
at sun.awt.RepaintArea.updateComponent(Unknown Source)

Figure 1.2: Concurrent Modification Error generated by the Maze. During execu-
tion of the original Maze ADT program, thousands of exceptions exactly like this one
are output to the console. We have modified the line number references so that they
correspond to the code shown in Figure 1.3.

1.4.1 Darkness. Consider the elided source code for the Maze ADT program

shown in Figure 1.3. The primary data structure of the application is the LinkedList

pointList which stores a list of Point objects. Each Point object has an associated

color. The color depends on whether the Point exists on the potential solution path,

on a dead end, or on a path not yet checked by the algorithm trying to solve the

maze. Because the programmer thought the application was single-threaded, there is

no synchronization, or locking, in the code.

Despite the use of double-buffering, the program appears to draw the path

chosen by the maze solving algorithm in “fits and starts.” This visual artifact is a

symptom of a Swing-imposed race condition in the original program. Another symp-

tom of the race condition in the program is the thousands of exceptions exactly like

the example shown in Figure 1.2 that appear on the console. These symptoms brought

the programmer to us for help. The programmer realized that his program with “no

concurrency” probably had some concurrency that he “didn’t put into it”—primarily

due to the stream of ConcurrentModificationException exceptions produced by

his program. This exception is an artifact of the “fail-fast” design of the Java collec-

tions classes. It is interesting that if the field pointList did not use the “fail-fast”

Java collection class LinkedList (e.g., it used an array), the programmer might never

have noticed the concurrency fault in his program.

7

1 public class Maze extends JFrame {
2

3 private final LinkedList<Point> pointList;
4

5 ...
6

7 public Maze(String mazeTitle, int Cell_Size, int Wall_Size, ...) {
8 ...
9 pointList = new LinkedList<Point>();

10 ...
11 }
12

13 public void addPointToPath(int x, int y, Color c) {
14 ...
15 Point point = new Point(x, y, c);
16 pointList.add(point);
17 this.repaint();
18 }
19

20 public void changeTopColor(Color c) {
21 Point point = pointList.getLast();
22 point.c = c;
23 }
24

25 @Override public void paint(Graphics g) {
26 ...
27 drawEntirePath(g);
28 }
29

30 private void drawEntirePath(Graphics g) {
31 Iterator<Point> i = pointList.iterator();
32 if (i.hasNext()) {
33 Point lastPoint = drawSquare(g, i.next());
34 while (i.hasNext())
35 lastPoint = drawSquareTo(g, lastPoint, i.next());
36 }
37 }
38

39 private Point drawSquare(Graphics g, Point p1, Point p2) {
40 g.setColor(p1.c);
41 ...
42 }
43 }

Figure 1.3: An elided version of the original Maze class which contains a subtle race
condition on the contents of pointList due to its use of Swing.

1 pointcut steadyState() : call(setVisible(..));
2

3 after() : steadyState() {
4 advanceQuantumWithCollection("Steady State");
5 }

Figure 1.4: The definition of a quantum for the Maze ADT program that instructs
FlashLight to begin dynamic analysis when the GUI is made visible with a call to
the setVisible method and to end when the program exits.

8

Figure 1.5: FlashLight detected that two threads access the field c in class Point.
The accesses occur in an instance of the Maze class. FlashLight classifies the accesses
as a potential race because two threads accessed the field without holding a common
lock.

1.4.2 Shining the FlashLight. We now use FlashLight to help “shed some

light” on the erroneous concurrency of our program. We assume the problem occurs

after the GUI is visible, based on the symptoms described above, such as the visual

artifact of the path being drawn in “fits and starts.” Therefore, our first step is to

configure FlashLight instrumentation with one quantum that begins when the GUI

is made visible and ends when the program exits. The definition of this quantum

focuses FlashLight on what we might call the program’s “steady state” phase of

execution. The definition of this quantum is shown in Figure 1.4. Quantums are

specified using AspectJ syntax (AspectJ is described later). The code in Figure 1.4

captures calls to the method setVisible. When a call occurs, a new quantum is

created labeled Steady State. This new quantum stores all the data captured by

the instrumentation. Upon completing the maze, the quantum’s data is analyzed to

determine if any state is shared among threads.

After we finish our quantum definition, Maze ADT is compiled with the AspectJ

compiler to “weave” in required instrumentation. In addition, the FlashLight JAR

(which contains code to store, analyze, and output results) is added to the program’s

classpath. At this point the program is executed. FlashLight causes the program to

output several results files that can be opened in a web browser.

A portion of FlashLight’s output is shown in Figure 1.5. Because of our quan-

tum configuration, only one field is highlighted in the output. The field c from the

9

Thread AWT-EventQueue-0 Read Count = 7652 Write Count = 0
Reads Stack Trace

at Maze.drawSquare(Maze.java:40)
at Maze.drawEntirePath(Maze.java:33)
at Maze.paint(Maze.java:27)
...

Figure 1.6: FlashLight output showing the stack trace for thread
AWT-EventQueue-0’s access of the field c in the drawSquare method at line 40
in Figure 1.3.

Thread main Read Count = 0 Write Count = 2368
Writes Stack Traces

at Maze.changeTopColor(Maze.java:22)
...

Figure 1.7: FlashLight output showing the stack trace for thread main’s access of
the field c in the changeTopColor method at line 22 in Figure 1.3.

Point class is reported as shared state and as a potential race condition. The re-

sults in Figure 1.5 report that this field is accessed by two threads: the main thread,

which the programmer expected, and AWT-EventQueue-0, which is a surprise to the

programmer!

In this example, FlashLight clearly points the programmer in the direction of

the program fault. It can’t, however, fix a muddled design for the programmer. The

output contains additional information to assist the programmer in the form of stack

traces. Figures 1.6 and 1.7 show the stack traces for the threads AWT-EventQueue-0

and main respectively. After examining all the FlashLight output, the programmer

can determine that the Point object instances being shared are all contained within

the pointList field of a single Maze object instance (declared at line 9 of Figure 1.3).

The tool output has only identified the c field of Point object instances as being

shared. However, this is an artifact of the current implementation—the programmer

realizes that, in fact, the entire state of each Point object instance might (perhaps

due to future code changes) be shared. Further, based upon the locality of the ac-

cesses within the Maze class, the programmer realizes that only Point object instances

contained in pointList are being concurrently accessed.

10

The programmer must also study the Swing library documentation to under-

stand the genesis of the AWT event queue thread and why calls to the Maze object’s

paint method are made by that thread and not the main thread as the programmer

expected.

1.4.3 Eliminating the Race. Clearly we need to protect the c field of Point

from being accessed concurrently. We see three uses of the field in Figure 1.3 at

lines 15, 22, and 40. These field accesses lead to the concurrent modification of

the pointList data structure. The concurrent modification occurs because while

the Maze object’s paint method is called by the AWT-EventQueue-0 thread, the

addPointToPath and changeTopColor methods are called by the program’s main

thread, which triggers the “fail-fast” exceptions from the LinkedList pointList.

This explains the stream of ConcurrentModificationException exceptions, but

not why our tool did not note the concurrent access to the internals of the shared

LinkedList implementation. This highlights a limitation of our tool: FlashLight can

only detect shared state within code it has instrumented. In this example the pro-

grammer did not use the AspectJ compiler to instrument the SDK libraries (typically

in a file named rt.jar) that contain the code for the LinkedList class. Only the

programmer’s own code was instrumented. This is why FlashLight discovered c to

be shared state and missed the shared internals of the LinkedList pointList.

Our programmer attempts to correct the fault by synchronizing each method

that accesses the pointList data structure: addPointToPath, changeTopColor, and

drawEntirePath. Note that his implicit design intent is that access to the contents of

the pointList should be protected by a lock on the enclosing Maze object. Does this

really fix the program fault? The programmer has high hopes, but wants to be sure.

He would like to verify this lock policy using the Fluid assurance tool. Hence, he runs

FlashLight again using the same configuration to have it propose a Fluid annotation.

1.4.4 FlashLight Proposes a Lock Policy. With the synchronization in place,

the race condition symptoms described above disappear during the execution of the

11

Figure 1.8: With synchronization in place, field c is consistently protected by the
Maze object. FlashLight reports the field is protected using a Fluid @lock promise.

program. The programmer is optimistic, but knows that a single execution of the

program is not a sound assurance that a race condition has really been fixed. When the

programmer reviews the FlashLight output he notes that the field c is still detected

as shared state. However, this time FlashLight reports that, at least for the particular

run of the program it observed, c is consistently protected by a lock on a Maze object.

The actual FlashLight output is shown in Figure 1.8.

As seen in Figure 1.8, FlashLight proposes a lock policy model in a syntax

similar to the Fluid @lock annotation. The proposed model in this case is

@lock cLOCK is <this>.Maze.3341135 protects field c

which indicates that locking a Maze object should protect the field c of Point objects.

Again, FlashLight points the programmer in the right direction, but can’t divine

design intent. Some thought is still needed to express the correct Fluid annotations

to assure the programmer’s fix is correct.

1.4.5 Verifying the Lock Policy. Armed with the proposed locking model

provided by FlashLight, it is possible to add Fluid annotations, called promises, to the

code. Using these annotations, the Fluid assurance tool can verify that our program

no longer contains the race condition. The Fluid assurance tool, unlike FlashLight,

12

1 /**
2 * @region MazeRegion

3 * @lock MazeLock is this protects MazeRegion

4 */
5 public class Maze extends JFrame {
6 /**
7 * @unshared

8 * @aggregate Instance into MazeRegion

9 */
10 private final LinkedList<Point> pointList;
11 /**
12 * @singleThreaded

13 * @starts nothing

14 */
15 public Maze(String mazeTitle, int Cell_Size, int Wall_Size, ...) {
16 ...
17 pointList = new LinkedList<Point>();
18 ...
19 }
20

21 public synchronized void addPointToPath(int x, int y, Color c) {
22 ...
23 Point point = new Point(x, y, c);
24 pointList.add(point);
25 this.repaint();
26 }
27

28 public synchronized void changeTopColor(Color c) {
29 Point point = pointList.getLast();
30 point.c = c;
31 }
32

33 @Override public void paint(Graphics g) {
34 ...
35 drawEntirePath(g);
36 }
37

38 private synchronized void drawEntirePath(Graphics g) {
39 Iterator<Point> i = pointList.iterator();
40 if (i.hasNext()) {
41 Point lastPoint = drawSquare(g, i.next());
42 while (i.hasNext())
43 lastPoint = drawSquareTo(g, lastPoint, i.next());
44 }
45 }
46

47 private Point drawSquare(Graphics g, Point p1, Point p2) {
48 g.setColor(p1.c);
49 ...
50 }
51 }

Figure 1.9: The corrected Maze class (changes from Figure 1.3 are italicized) with
Fluid promises added to precisely specify its lock policy: when accessing the contents
of pointList a lock on the object instance (i.e., this) must be held. The Fluid
assurance tool verifies this lock policy is consistent with the code.

13

Figure 1.10: The Fluid Assurance tool (running inside the Eclipse Java IDE) applied
to corrected Maze class. The tool is able to assure the code is consistent with the
locking policy. The “Fluid Verification Status” display at the bottom-right indicates
model–code consistency via the green plus icon prefixing the second line of its results.

14

considers all possible paths the program may take at runtime, and therefore its results

are sound.

Recall that the implicit design intent behind the fix made to the Maze ADT code

is that access to the contents of the pointList is protected by using the enclosing Maze

object as a lock. Figure 1.9 shows the corrected Maze class (i.e., synchronized has

been added to all needed methods) annotated with necessary Fluid promises to assure

its lock policy. The results, which indicate that the Maze ADT code is consistent with

the annotated lock policy, are shown in Figure 1.10. Understanding the details of the

promises in Figure 1.9 and the details of the verification results produced by the Fluid

assurance tool in Figure 1.10 is beyond the scope of this thesis; however, we refer the

interested reader to [8] and the “Introduction to Declaring Design Intent in Fluid” on

the Fluid project web site.5

1.5 Case Studies

We applied FlashLight to several concurrent Java programs including educa-

tional software, an established open source project, and a commercial system. These

case study experiences motivated improvements to FlashLight:

• We reduced the number of false positives in the output by improving the lock-set

algorithm used by the tool to support common Java programming practices.

• We continuously improved the format and contents of the reports produced by

the tool to increase their usefulness and comprehensibility.

• We discovered and repaired several serious flaws in the tool.

As part of our case study, we also evaluated the overhead incurred by using Flash-

Light. During our trials, the open source text editor jEdit took approximately 1.7

times longer to execute while being inspected with FlashLight. During our commer-

5http://www.fluid.cs.cmu.edu:8080/Fluid/annotation-handout.html

15

cial case study, the commercial programmers noted no significant difference in the

performance of their application server except for an increase in memory use.

1.6 Outline

The remainder of this document is organized as follows:

• Chapter II, “Definitions and Prior Work,” provides precise formal definitions for

shared state, race condition, and what we mean by consistent and inconsistent

protection of state in a concurrent program. This chapter also frames our work

in the context of prior research.

• Chapter III, “Tool Use,” describes details of how to use FlashLight.

• Chapter IV, “Tool Engineering,” describes the design and implementation of

FlashLight. This chapter describes our approach to limiting false positive re-

sults reported by the lock-set detection algorithm used by FlashLight. It also

describes our approach to proposing lock models usable by the Fluid assurance

tool.

• Chapter V, “Case Studies,” describes several case studies, one with a top-10

business software company, to which we applied our FlashLight prototype tool.

This chapter reports the strengths and weaknesses of FlashLight found on these

case studies.

• Chapter VI, “Conclusion,” summarizes our results and covers possible future

work.

16

II. Definitions and Prior Work

This chapter discusses relevant prior work in the area of analysis techniques and tools

for understanding concurrent programs. We focus on dynamic analysis techniques

for race condition detection because this is the focus of FlashLight, but we also note

tools based upon model checking or static analysis. Furthermore, we use this chapter

to precisely define several terms and provide a quick introduction to aspect-oriented

programming (AOP), which FlashLight uses to instrument programs.

Section 2.1 defines shared state, race condition, and what we mean by consistent

and inconsistent protection of state in a concurrent program. Section 2.2 discusses

three approaches for dynamically identifying possible race conditions: happens-before,

lock-set, and the O’Callahan–Choi hybrid. We also discuss why we chose the lock-

set approach for FlashLight. Sections 2.3 and 2.4 review related work using model

checking and static analysis, respectively. Section 2.5 describes aspect-oriented pro-

gramming and reviews prior dynamic analysis tools, similar to FlashLight, that have

used this technology to instrument programs.

2.1 Definitions

In this next section, we define shared state in a concurrent Java program and

formalize the notion of a race condition.

2.1.1 What is Shared State? Java programs typically have more than one

thread of execution. Each thread of execution has its own stack, but threads share

a single heap, so all objects are available to all threads. It is this reason that all

fields, instance and static, are available to be shared. For the Java programming

language, we define shared state as all the fields accessed by multiple threads. By

design, fields are the only possible shared state within a Java program [7].1 It is not

possible to communicate across threads of execution via local variables or parameters

1We note, for the sake of completeness, that Java threads may communicate via pipes. However,
we do not consider pipes to be difficult for programmers to identify in a concurrent program and,
therefore, do not consider them further in this work. For more information on pipes see [7, 22].

17

(which exist as part of a single thread’s stack). Not all state within a concurrent Java

program is shared. For example, particular object instance fields or static fields may

in actuality be accessed by a single thread only.

Choi, et al. in [3] propose a formalization for access events that occur within

one execution of a particular program. We use this formalism to precisely define

our notion of shared state, inconsistently protected shared state, and consistently

protected shared state. Choi, et al. define an access event to consist of a 5-tuple

(m, t, L, a, s), where

• m is the memory location accessed

• t is the thread which performs the access

• L is the set of locks held by t at the time of the access

• a is the access type {READ, WRITE}

• s is the source location of the access instruction

The source reference, s, is only used for reporting information about events. A pro-

gram execution defines a set of access events, E.

We can use this formalism to precisely describe the shared state of a Java

program. For this purpose, m is restricted to be the location of a field inside an

object in the program’s heap. Thus, the set of shared state within a program, Sshared,

is defined as

Sshared = {m | ∀ex, ey(ex ∈ E ∧ ey ∈ E ∧ shared(ex, ey) ∧ m = ex.m)}

where the predicate indicating a shared access is defined as

shared(e1, e2) :
e1.m = e2.m ∧ e1.t 6= e2.t ∧

(e1.a = WRITE ∨ e2.a = WRITE)

18

for any two access events e1 and e2. Informally, a shared access occurs any time a

field is accessed by more than one thread and at least one access is a WRITE . Our

definition of shared state does not consider if any locks are held when the field is

accessed.

2.1.2 What is a Race Condition? We have informally defined a race con-

dition as anomalous program behavior due to an unexpected critical dependence on

the relative timing of events. In this section we make this definition more precise.

Using the access event formalism described above, we adopt the definition of

Choi, et al. in [3] for a potential race condition. Given two access events, e1 and e2,

a potential race condition can be defined as the predicate

race(e1, e2) : shared(e1, e2) ∧ e1.L ∩ e2.L = ∅

and the set of state with the potential for a race condition, Srace, is defined as

Srace = {m | ∀ex, ey(ex ∈ E ∧ ey ∈ E ∧ race(ex, ey) ∧ m = ex.m)}.

Note that Srace is the set of all shared state that is inconsistently protected or not

protected at all. State within this set creates the potential for a race condition within

the program; however, it is not possible to conclude that this necessarily indicates

a program fault. Why? Because a policy of non-lock single-threaded access may

exist within the program that serves to ensure a race condition does not occur. We

may conclude, however, that any state in Srace is suspicious and should be considered

“guilty until proven innocent” in terms of creating the potential for a race condition.

These definitions are the basis for the detection of shared state and possible

race conditions in FlashLight. FlashLight extends the above notion of E to create

multiple sets of access events throughout the lifetime of the program’s execution. A

programmer-specified subset of E is called a quantum—a partition of the program

19

All Sharable Program State

Detected Shared Program State (S)shared

Inconsistently Protected
Shared State (S)race

Figure 2.1: A diagram illustrating the relationship between all sharable program
state within a particular execution of a program (i.e., Java fields within object in-
stances), state that was shared by one or more threads, Sshared, and shared state that
was inconsistently protected by locks, Srace. The inconsistent protection of the state
in Srace could indicate the potential for a race condition on that state.

execution time (e.g., startup, steady state, shutdown). It is within a particular time

quantum that FlashLight searches for shared state and potential race conditions.

This definition implies that all state that is inconsistently protected is also

shared state, but the reverse does not hold. Therefore, Srace ⊆ Sshared, as is shown

in Figure 2.1. Finally, we emphasize that because Sshared and Srace are constructed

from data from a single execution of the program, these sets are incomplete. State

that, in fact, is shared might not appear in Sshared because it was not shared in that

particular execution of the program. State that is, in fact, inconsistently protected

within the program might not appear in Srace because it was consistently protected

in that particular execution of the program.

Consider the set, Sprot = Sshared \ Srace, i.e., the set of shared state that is

consistently protected by the same set of locks. The set of locks protecting some

state, m, may be defined as

locks(m) =
⋂

e∈{x∈E |x.m=m}

e.L

20

where if m ∈ Srace then it will always be the case that locks(m) = ∅. Sprot is, like

Sshared and Srace, incomplete.

2.1.3 Java Mapping. FlashLight is a tool to analyze Java. We now relate

the above access event formalism to the Java language.

• m: A memory location. In Java, m references an object instance on the heap

or fields within an object instance on the heap.

• t: A thread. In Java, t refers to a Java thread.

• L: A set of held locks. In Java, a single lock is associated with every object,

array, and class. L is the set of locks held by the Java thread which accessed m.

• a: Either READ or WRITE depending upon the type of access to m.

• s: For Java we can track not only the compilation unit (i.e., Java file) and line

number of the access event, but also the stack trace leading up to the access

event.

2.2 Dynamic Analysis Race Condition Detection Algorithms

Dynamic analyses for detecting race conditions are typically classified as on-

the-fly or post-mortem which classifies when these analyses produce their results.

FlashLight is a post-mortem detector.

On-the-fly detectors collect run-time information about a program and report

errors as they occur. Schonberg describes an on-the-fly detector in [21] and argues

that the biggest advantage for this type of detector is system resource preservation.

An on-the-fly tool discards information when it becomes apparent the information

is no longer needed. For example, when a race condition is found and reported, the

accompanying trace information is disposed. System resource consumption, especially

memory, is a valid concern: in FlashLight we only keep unique stack traces. Each

stack trace has an associated counter. If we encounter multiple instances of the same

trace, we increment the counter instead of storing multiple instances of the stack

21

trace. However, FlashLight is a post-mortem detector and we do use a significant

amount of program memory to store analysis data.

Post-mortem detectors evaluate information collected (and saved) during one or

more runs of a program for potential race conditions. Because FlashLight is a post-

mortem detector, we focus on prior work using this approach. We describe three post-

mortem techniques used to dynamically detect race conditions. Table 2.1 summarizes

the positive and negative aspects of three dynamic race condition detectors described

in the literature. FlashLight implements the lock-set technique that compares the set

of locks held by each thread at a given access event to determine if state is consistently

protected. We chose the lock-set approach because of its straightforward engineering

and its ability to be extended to support time quantums.

Program analyses are susceptible to two kinds of errors with respect to the

results they report: false positives and false negatives. A false positive result is when

the analysis reports a result that, in fact, is not really a result. For example, if an

analysis reports that concurrent access to a field is a race condition, but it turns out

that the programmer intended the observed concurrent access (for some reason), then

the program was correct (with respect to its programmer intended functionality) and

the analysis has produced a false positive result. Here we say that the analysis is

being conservative. A false negative result is when the tool does not report a result

that, in reality, exists in the program. For example, if a program contains a race

condition that is not reported by an analysis, then the analysis has produced a false

negative result. Here we say that the analysis is being gullible.

Another measure used to compare dynamic analysis approaches is overhead.

Because the analysis runs “together” (in our case on the same Java Virtual Machine

(JVM)) with the target program, the analysis utilizes additional system resources

(e.g., memory and time). We define the term overhead as the additional resources

required to execute both the target program and the dynamic analysis. A large over-

22

Table 2.1: Positive and negative aspects of post-mortem dynamic analysis race
condition detection algorithms in the literature. This comparison guided our selection
of the lock-set algorithm for FlashLight.

Technique Pros / Cons
Happens-before [14] Pro: No false positive results

Con: False negative results (i.e., gullible)
Con: High runtime overhead (i.e., slows program)

Lock-set [20] Pro: No false negative results
Pro: Less runtime overhead than happens-before
Pro: Simple algorithm
Con: False positive results (i.e., conservative)

O’Callahan–Choi Hybrid [17] Pro: Improved precision over other techniques
Pro: Less runtime overhead than happens-before
Con: Complex Algorithm
Con: False positives from lost lock acquisitions
Con: False negatives from lost memory acquisitions

head equates to requiring more system resources to execute both the target program

and the dynamic analysis.

We now describe each of the three dynamic analysis approaches to detecting

race conditions summarized in Table 2.1 and contrast them to FlashLight.

2.2.1 Happens-Before. The happens-before ordering is a partial order on all

the events of all the threads in a concurrent execution of a program. This ordering

was introduced by Lamport in [14] to describe the order of events based on known

or deduced information. Given a single thread, the events are ordered in the order in

which they occur. Given multiple threads, events are ordered based on the properties

of the synchronization objects they access.

O’Callahan and Choi argue in [17] that happens-before produces no false posi-

tives because for every event the happens-before detection finds, there exists a thread

scheduling where the threads in question could execute “simultaneously” and there-

fore produce a race condition. Based solely on this analysis, one might assume that

the majority of the dynamic analysis tools would implement happens-before detection

23

obj.v = obj.v +1

lock(mu)

unlock(mu)

obj.y = obj.y+1

Thread t2Thread t1

lock(mu);

obj.v = obj.v +1;

unlock(mu);

obj.y = obj.y+1;

Figure 2.2: This program contains a race condition on y, but the fault will not be
reported by a happens-before detector that observes this particular execution inter-
leaving (a false negative). Both threads access memory location y in an unprotected
fashion (a race condition); however, a happens-before race condition detector does
not detect the race because in this sequence of events, thread t1 holds the lock (mu)
before thread t2, so the accesses to y are ordered in this interleaving.

24

to uncover race conditions. This is not the case for two reasons: (1) A happens-before

detector has a high runtime overhead. The best implementation to date, TRaDe

described by Christiaens and DeBosschere in [4], slows Java programs by roughly a

factor of five. (2) A happens-before detector can produce false negatives, i.e., it can

fail to detect potential race conditions that were dynamically observed. Figure 2.2

demonstrates a race condition missed by happens-before (a false negative). Two

threads execute code to manipulate fields v and y of an object instance referenced by

obj. The field v is protected from concurrent access by locking on mu. However, the

field y has no synchronization. The program has a potential race condition on y that

is missed by the happens-before detector because in this sequence of events, thread t1

holds the lock mu before thread t2, so the accesses to y are ordered in this particular

interleaving. A happens-before based tool would only find this error if the scheduler

executes thread t2 before thread t1 [20].

2.2.2 Lock-Set. A lock-set detection algorithm compares the locks held by

threads when they access state. If inconsistent sets of locks are used when access-

ing state, a potential race condition is reported. FlashLight uses lock-set detection

augmented with time quantums.

We describe the lock-set algorithm used by the Eraser application [20]. The

premise of lock-set analysis is that every shared field access is protected by a lock.

O’Callahan and Choi in [17] formalize this with their lock-set hypothesis.

Whenever two different threads access a shared data memory location,
and one of the accesses is a write, the two accesses are performed holding
some common lock

This hypothesis is the basis for determining which field accesses produce race condi-

tions in lock-set.

Savage, et al. in [20] introduce the lock-set dynamic analysis algorithm via their

Eraser tool. The lock-set algorithm maintains a set of candidate locks C(m) for each

shared field m. This set contains the locks that have protected the field m thus far

25

through the execution. For example, a particular lock l is in the set C(f) if every

thread that has accessed field f was holding l at the the time of the access. When a

new field m is initialized, C(m) is set to the set of locks currently held by the thread

which performs the initialization. At each access of m by a thread, the Eraser tool

intersects C(m) with the set of locks held by the accessing thread. The intersection

operation refines the list to only contain the common locks held at every m access

event. If C(m) = ∅ at the end of the program then the tool issues a warning.

The Eraser algorithm contains refinements so that it produces fewer false pos-

itives. Three safe programming idioms were discovered that produced false positives

with the lock-set algorithm:

• Initialization: Shared fields are frequently initialized without a lock being held.

This is safe because, typically, no other thread holds a reference to the object

being initialized.

• Read-only shared data: State is initialized with a value and is read-only there-

after.

• Read-write locks: State is accessed by multiple readers, but only a single writer.

To support the first two programming idioms, Eraser uses a state machine,

shown in Figure 2.3, to track actual use of a field. When a field is created, it is set

to the Virgin state, indicating that the data is new and has not been referenced by

a thread. Once the data is accessed by a thread it transitions to the Exclusive state.

This means that at the present time only one thread has accessed the field. This

addresses the initialization of C(m), because the first thread can initialize the field

without causing C(m) to be refined. If another thread accesses the field, then the

state changes. A read access changes the state to Shared. In the Shared state, C(m)

is updated, but race conditions are not reported. This addresses the read-only shared

fields, because numerous threads can read a variable without writing to the field and

not develop a race condition. The other case that needs to be addressed is when

a thread writes to a field. A write access from a different thread changes the state

26

Exclusive

Shared-
Modified

Shared

write
 read/write, first thread

 write, new thread

write

read, new
thread

 reads

Virgin

Figure 2.3: Eraser’s state machine for memory locations [20]. Each new memory
location starts in the Virgin state. Once a memory location is initialized with a value
the state changes to Exclusive state. If another thread reads the value, the memory
location transitions to the Shared state. As long as the memory location is just read
it remains in the Shared state. If another thread writes to the memory location, the
memory location transitions to the Shared-Modified state. In this state, potential race
conditions are reported if all accesses to the memory location are not protected.

from Exclusive or Shared to Shared-Modified. In this state C(m) is updated and race

conditions are reported.

The third programming idiom uses locks with different modes to protect write

and read accesses. As long as a thread holds one of the read locks, it is granted access

to read the state. However, only threads holding a write lock are able to write to

the state. The Eraser algorithm works by comparing which locks are held to perform

reads and writes. To determine a potential race condition, locks held purely in read

mode are removed from the candidate set of locks when a write occurs, because the

locks used only to protect reads do not protect against race conditions between the

writer and some other readers.

We make use of the classic lock-set algorithm used by Savage, et al in Eraser.

We implement a modification of Eraser’s state chart based on our quantum imple-

mentation. Our analysis incorporates the initialization and read-only modifications to

reduce the number of false positives in typical Java code. These modifications allow

27

FlashLight to report more precise results about the behavior of the program when

compared with the basic lock-set algorithm.

2.2.3 O’Callahan–Choi Hybrid. O’Callahan and Choi in [17] propose a

hybrid dynamic race condition detection algorithm that combines happens-before and

lock-set techniques. Their algorithm tries to reduce the false positives of the lock-set

algorithm while at the same time keeping its overhead low. This work demonstrates

the importance of tuning program instrumentation to reduce program execution time.

They introduce a dynamic optimization “oversized-lockset” whereby they run the

program twice, tuning instrumentation for the second run based upon results of the

first run. Benchmark programs demonstrate these two runs combined are often far

quicker than a single run without tuned instrumentation. For example, the Tomcat

web server takes roughly 81 seconds to execute both runs when “oversized-lockset” is

applied, but 129 seconds when a single run is made with full instrumentation. The

empirical basis for the “oversized-lockset” dynamic optimization is that most Java

threads hold very few locks at any point in time.

FlashLight does not implement the “oversized lockset” dynamic optimization

proposed by O’Callahan and Choi, nor any form of “multi-run tuning” of dynamic

instrumentation. Instead, our use of AspectJ to instrument the program allows di-

rect programmer tuning of how much instrumentation is added to the program. We

are unlikely to add “multi-run tuning” of FlashLight instrumentation in the style of

O’Callahan and Choi because in our case studies we have encountered programs that

are difficult to run in a repeatable manner. These programs include those with graph-

ical user interfaces that must be manipulated by the programmer to ensure program

progress, and application servers that require lengthly pre-execution set up.

This concludes our discussion of the dynamic race condition detection algo-

rithms. The next two sections describe alternative race condition detection algo-

rithms. The first technique uses abstraction to create a model of the program. The

28

second technique evaluates the structure of the code. In these sections, we explain

how these two approaches differ from FlashLight.

2.3 Model Checking Techniques for Race Condition Detection

FlashLight suggests locking models that can be expressed and subsequently

verified by the Fluid assurance tool. The Fluid assurance tool requires design intent

that FlashLight tries to infer based upon the runtime behavior of the program. Flash-

Light also reports possible faults or “bugs” in the program (i.e., race conditions)—in

this sense it is a “bug hunting” tool.

Tools based upon model checking are another approach to “bug hunting.” These

tools typically use static analysis to create abstract models of the code. These models

are then run through a model checker, such as Spin [11], to locate potential concur-

rency faults. An example of a model checker tool is Java PathFinder2 [23], which is a

custom-built model checker for Java. This tool was built in response to short-comings

in previous model checkers that lacked the ability to model the entire language. It is

a new model checker that is able to execute the entire language. JPF incorporates

static analysis tools to reduce the state space that has to be searched by the model

checker. The tool also has the ability to perform run-time analysis using two run-time

algorithms, Eraser’s lock-set algorithm and their own “LockTree” lock-set approach.

These algorithms can be used stand-alone or with the model checker [23].

The concept of using runtime analysis to guide model checking is further dis-

cussed by Havelund in [10]. He describes an approach of integrating dynamic analysis

with model checking to find race conditions and deadlocks. The tool has two op-

erating modes. The first is a stand-alone or simulation mode that uses a dynamic

analysis to report race conditions and deadlocks. The second mode generates reports

about possible race conditions and deadlocks that can be used with their custom built

model checker to evaluate consequences of the errors [10]. Much like FlashLight, both

of these techniques use their run-time analysis to provide insight into the dynamic

nature of a program.

29

2.4 Static Analysis Techniques for Race Condition Detection

There are numerous static analysis tools for locating shared state and race con-

ditions. One static tool for detection of race conditions is RacerX [5]. This C-language

tool is designed to locate errors in large, complex multi-threaded systems (e.g., oper-

ating systems, which are typically implemented in C). It uses a flow-sensitive, inter-

procedural analysis to locate both deadlocks and race conditions. This tool operates

on code with no additional design intent to “hunt bugs.” It is both unsound and

incomplete. RacerX has, however, uncovered faults in several operating systems.

A hybrid static–dynamic technique for race condition detection proposed by

von Praun and Gross in [18] is based on object race detection instead of field ac-

cesses. Their detector is designed to locate races in object access opposed to field

access. An object access occurs when a method of an object is called. The detector

uses the concept of confinement as described by Lea in [15]. Confinement is a prop-

erty of a program that exploits encapsulation of data to guarantee that at most one

thread can access an object. Confinement is used to reduce the amount of program

instrumentation because the structure of the object accesses can be determined at

compile-time. They make use of static analysis techniques, namely escape analysis,

to determine which objects could be shared. The dynamic analysis determines which

objects are accessed by multiple threads and if any of these accesses lead to potential

race conditions.

von Praun and Gross use an object use graph (OUG) to statically capture

accesses from different threads to objects for the purpose of detecting race condi-

tions [19]. The OUG approximates Lamport’s happens-before relation between access

events issued by different threads to a specific object. This technique locates object

races as opposed to field races as in many other techniques, including our own. The

information in the OUG has been used to instrument Java programs with dynamic

checks for object races.

30

Determining whether two field accesses could happen simultaneously is an im-

portant step in identifying a possible race condition. The may happen in parallel

relationship is applicable to optimization, anomaly detection (e.g. race conditions),

and improving accuracy of data flow analysis. Naumovich, Avrunin, and Clarke in [16]

describe a data flow method for computing a conservative approximation of the set of

pairs of statements that may happen in parallel in a Java program. Their algorithm

has a worst case bound that is cubic in the number of statements in the program.

2.5 Engineering Dynamic Analysis using AOP

FlashLight uses aspect-oriented programming (AOP) to instrument code to

gather run-time information about field accesses and lock acquisition. Section 2.5.1

provides an overview of AOP. Section 2.5.2 discusses some other dynamic analysis

approaches that use AOP.

2.5.1 An Overview of AOP. Kiczales, et al. provides the foundation for

aspect-oriented programming in [13] and background on the development of the As-

pectJ language, which we use for FlashLight, in [12]. The key problem AOP is

designed to solve is how to handle cross-cutting concerns within an application. The

cross-cutting concerns are the result of composing an application in two different man-

ners because of restrictions placed on the developer by the programming language.

The central element of any aspect-oriented language is the join point model.

Join points are well-defined points in the execution of a program. Join points can

be considered as nodes in a simple runtime object call graph. These nodes consist of

points at which objects receive calls, objects are constructed, and objects are refer-

enced. The edges of the call graph are control flow relations between the nodes. In

this graph, control passes through each node twice, once on the way in and once on

the way out—that is, before and after the join point.

A pointcut specifies a set of join points. AspectJ provides primitive pointcuts

to be used to match the join points. Pointcuts can also be composed to match more

31

complex join point expressions. Advice is a segment of code associated with a pointcut

that is executed when a join point is matched. Advice can be inserted into three

positions for each join point, before a join point, after a join point, or both, called

around advice. Pointcuts are combined with advice to form aspects. Aspects are

defined similarly to classes. Aspect declarations may include pointcut declarations,

advice declarations, and any other declaration allowed in class declaration.

To make advice easier to construct, AspectJ provides a reflexive capability to the

current join point. Within advice, the special variable thisJoinPoint is linked to the

object representing the current join point. This object provides information common

to all join points (e.g., kind and signature of the join point). The thisJoinPoint also

provides information specific to each kind of join point: for example, a field access

join point provides information about the field signature.

A goal of any AOP language is to have the aspect and regular code execute

in unison. This coordination process is called aspect weaving and involves insuring

that advice executes at the appropriate join points. AspectJ provides a compiler-

based implementation to perform the weaving. This implementation performs almost

all weaving work at compile-time. There are a few advantages to this compile-time

implementation. First, it exposes as many errors as possible at compile time. By

integrating the tool into an IDE, this provides prompt user feedback. Second, this

implementation avoids unnecessary runtime overhead (i.e., checking at all points in

the call graph if advice needs to be run).

The AspectJ compiler uses a “pay-as-you-go” strategy. Code that is not affected

by advice is compiled just as it would be by a standard Java compiler. The AspectJ

compiler transforms advice into a standard Java method that is run before or after

the join point (as specified by the pointcut for its corresponding aspect).

2.5.2 Other uses of AOP for Dynamic Analysis. Our use of AspectJ in

particular, and AOP in general, as the vehicle to instrument a program is not novel.

32

However, it is not yet common practice. In this section, we review some prior dynamic

analysis work which, like our work, relies upon AOP to instrument a program.

Bierhoff and Aldrich in [1] use AspectJ to ensure objects at runtime conform to a

specified protocol, which they term a typestate. Their tool uses AspectJ to instrument

existing Java code with dynamic checks of conformance to the programmer’s typestate

specification.

Goldberg and Havelund describe their custom built instrumentation package

JSpy in [6]. JSpy is designed to instrument code to locate race conditions and dead-

locks. JSpy was developed because AspectJ is unable to determine the boundaries

of synchronized statements. Our solution, discussed in more detail in Chapter IV,

is to rewrite the source code around synchronized statements in the program to be

analyzed.

Boroday, et al. designed a dynamic anti-pattern detector which they describe

in [2]. Their work uses AOP for program instrumentation. They convert the out-

put from an instrumented program into a Promela model and use the Spin model

checker to verify the code is free of anti-patterns including race conditions. Similar

to FlashLight, the dynamic analysis portion of this tool is intended to feed into a

verification system—in their case to the Spin model checker, in our case to the Fluid

assurance tool. A key difference is that Boroday, et al. define the anti-patterns (i.e.,

design intent) that Spin searches for violations of. FlashLight guesses design intent

by proposing a lock model for each piece of consistently protected state in the pro-

gram. However, we require a “programmer in the loop” who can refine or reject the

model proposed by FlashLight before asking the Fluid assurance tool to perform a

verification of model–code consistency. Thus, we as tool developers do not, a pri-

ori, try to impose design intent upon a concurrent system (i.e., what constitutes an

anti-pattern).

33

III. Tool Use

This chapter describes how a programmer would use FlashLight to better understand

the concurrency in their program. FlashLight use can be divided into three steps:

1. Customize FlashLight instrumentation.

2. Run the target program with FlashLight instrumentation.

3. Examine reports about the target program’s concurrency.

We describe each of these steps in this chapter. Section 3.1 describes how to cus-

tomize FlashLight’s instrumentation. Section 3.2 describes running the instrumented

program. Finally, Section 3.3 describes the set of reports produced by FlashLight

about the target program.

3.1 Customizing FlashLight Instrumentation

FlashLight requires information about how to instrument a target program.

Specifically, the programmer needs to tell FlashLight when the analysis should start

and stop collecting data. FlashLight allows multiple time periods of dynamic data

collection, called quantums. These are partitions of the running program’s timeline.

Quantums allow the programmer to analyze parts of the program’s execution sepa-

rately, e.g., this is the “start up” phase of my program, this is the “steady state”

of my program, and this is the “shut down” phase of my program. To lower run-

time overhead, the programmer may also restrict data collection to a subset of the

program’s classes. The programmer provides information about how to instrument a

target program in the form of AspectJ pointcut specifications. FlashLight then uses

the AspectJ compiler to “weave” these instrumentation specifications into the target

program.

To track lock acquisitions within the program, a source code rewriter that inserts

additional instrumentation is run on the program. This source code rewriter is needed

because, as is discussed further in Chapter IV, the pointcut mechanism of AspectJ

34

cannot track lock acquisition and releases within a program. The process for initiating

the source code rewriter is described in detail in Section 3.1.1.

3.1.1 Setting Up FlashLight. During our development and case studies we

used FlashLight within the Eclipse IDE with the AspectJ Development Tools (AJDT)

plug-in. FlashLight can, however, be run outside of Eclipse. This capability was used

in our commercial case study described in Section 5.3 on page 76. FlashLight requires

the AspectJ compiler to weave advice into the target program and generate instru-

mented byte code. FlashLight also requires a Java Runtime Environment (JRE) to

execute the instrumented program. The following directions assume the programmer

is using the Eclipse IDE. Our own experience confirms that FlashLight is portable to

both the Linux and Windows operating systems.

1. Install a Java SDK (available at http://java.sun.com), the Eclipse Java IDE

(available at http://www.eclipse.org), and the AspectJ AJDT (available at

http://www.eclipse.org/aspectj).

2. Install the FlashLight source code rewriter in the Eclipse plug-in directory.

The rewriter code can be checked out from from the CVS pserver host fluid.

cs.cmu.edu from the repository path /cvs/afit using the module name edu.

afit.fluid.dynamic.rewriter. This adds a menu choice, “AFIT Dynamic

Lock Tracking,” to every Java project that rewrites the project’s source code to

track lock acquisition and release.

3. Load the target code into an Eclipse project. Ensure that you make a copy of

the original code. This is important because the FlashLight source code rewriter

changes the original code and our current implementation does not allow the

changes to be reversed (this is a straightforward feature to implement but was

not done due to time constraints).

4. Check out the FlashLight code, as an Eclipse project, from the same CVS

server used to install the rewriter. This code is stored under the module name

35

Figure 3.1: Invoking the FlashLight Source Code Rewriter. This menu action
rewrites the source code of the fleetbaron project to allow FlashLight to track lock
acquisitions and releases by threads within the running target program.

/shale/Dynamic Analysis. This project represents the parts of the FlashLight

code that must be added to the target code to preform FlashLight ’s dynamic

analysis.

5. Copy the source folder “Analysis Tools” from the “Dynamic Analysis” project

into the project containing the target code.

6. Run the FlashLight source code rewriter on the target code’s project by select-

ing “AFIT Dynamic Lock Tracking” → “Add to Code” as shown in Figure 3.1.

36

Figure 3.2: AspectJ-Specific Icons. The appearance of red arrow icons (to the left)
within the target code is a good indication that the target program is instrumented
and ready to be run. If they don’t appear, a rebuild of all the code with AspectJ may
be required; alternatively, the instrumentation specification may be inconsistent with
the target program’s source code.

7. Add the “Aspect Nature” to the project containing the target code by right-

clicking on the project and selecting “AspectJ Tools” → “Add AspectJ Nature”

(like the previous step). This step allows the project containing the target code

to be compiled using the AspectJ compiler that FlashLight uses to “weave” its

instrumentation into the target program.

8. When the target program is run, FlashLight will place its output reports into

a folder named xml. The xml folder contains the files to transform and present

the XML output generated by FlashLight as programmer readable web page

reports. To setup this folder, you unzip the xml.zip file located at the root of

the “Dynamic Analysis” project into your project.

9. As introduced above, FlashLight needs to be provided with a program-specific

instrumentation specification. We cover this topic in further detail below.

10. At this point, there should be no errors in the project. If Eclipse does not

update itself with AspectJ-specific icons, as shown in Figure 3.2, rebuild the

workspace.

11. Run your application and exercise it as you wish. During the program’s execu-

tion FlashLight will collect data per the instrumentation specification.

37

12. Upon the successful termination of your program you may need to refresh the

Eclipse “Package Explorer” view. This makes the FlashLight reports appear in

the xml folder. You can examine the reports about the execution of the target

program by opening the index.html file in any web browser.

Once the AJDT and the rewriter plug-in are installed into Eclipse, only steps 3

through 12 are required to configure FlashLight to analyze a different target program.

3.1.2 Tuning Target Program Instrumentation. Tuning the target program

instrumentation consists of introducing several AspectJ pointcut specifications to

control aspects of FlashLight’s instrumentation. The program initialization aspects

“turn on” FlashLight, meaning they create quantums and allow the FlashLight data

store to capture data from the instrumentation. The program termination aspects

stop data capture and cause FlashLight to analyze its collected data and output

the reports about the target program. These aspects are specialized for each target

program and require programmer insight about the runtime behavior of the target

program to obtain useful results from FlashLight.

This section describes several helpful patterns for tuning FlashLight target pro-

gram instrumentation. These patterns emerged during our case studies. First, we

describe pointcuts used to start FlashLight data collection. Second, we explain how

to advance the quantum (optionally without data collection). Finally, we discuss ef-

fective ways to terminate data collection, execute the analysis of the collected data,

and output FlashLight reports.

• Useful pointcut patterns: We must define pointcuts to weave in advice to ad-

vance the collection quantums. One typical situation is to start data collection

when a class is initialized. We developed a pattern of using the staticinitial-

ization pointcut, which matches any class that is initializing. For example, the

declaration

pointcut startup() : staticinitialization(*..Maze);

38

indicates we want to “trigger” when the Maze class is initialized (i.e., loaded by

the class loader). This pattern is useful if you want to start FlashLight data

collection right at the very start of a program. To do this replace Maze with the

name of the class containing your main program.

Another pattern encountered is that the programmer wants to delay data col-

lection until the target program completes initialization and transitions into a

“steady state.” We have found this pattern useful for network servers and pro-

grams with significant graphical user interfaces because these types of programs

have a clear “start up” phase (which is single threaded) followed by a concurrent

“steady state.” We specify a pointcut that executes after the program is fully

initialized. For example, the declaration

pointcut steadyState() : call(* *..*.setVisible(..));

indicates we want to “trigger” when the setVisible method is invoked. In a

program using the Swing framework, this call is typically used to make the main

window of the application visible on the screen.

• Advancing the quantum: Using the pointcuts we just discussed, we can now

describe how we advance quantums. The pointcut is the trigger and the calls

discussed in this section control FlashLight data collection. Quantums partition

the program execution. Quantums act as a container for all target program data

FlashLight collects, and reports are generated for each quantum that contains

data. The instrumentation triggers when quantums begin by simply advancing

the quantum. The new quantum is in effect until the instrumentation advances

to a new quantum, or collection is terminated. There are two methods that

advance a quantum. The first, advanceQuantumNoCollection, advances the

quantum but does not collect data for the new quantum. The second, advance-

QuantumWithCollection, advances the quantum and does collects data for the

new quantum. For example, the declaration

pointcut startUp() : staticinitialization(*..Main);

39

before() : startUp() {
Store.getInstance().advanceQuantumNoCollection();

}

advances the quantum with no collection when the Main class of the target

program is initialized. We use this approach to start FlashLight and skip data

collection until the program reaches its “steady state” phase of execution. At

that time we advance the quantum and begin to collect data. For example, the

declaration

pointcut steadyState() : call(* *..*.setVisible(..));

before() : steadyState() {
Store.getInstance().advanceQuantumWithCollection("SteadyState");

}

starts a new quantum, called SteadyState, with data collection when the

setVisible method is invoked.

The advanceQuantumWithCollection method takes two parameters. The first is

mandatory but the second is optional. The first parameter provides a programmer-

defined name for the quantum (the example above defines SteadyState as the

quantum name). The second parameter allows the programmer to specify a pre-

fix for all report filenames (the example above doesn’t define a report filename

prefix). This optional prefix is useful for target programs that have multiple

main programs. It provides a way to distinguish each main program’s Flash-

Light reports.

• Generating output reports: A programmer specification of when FlashLight

should stop data collection, analyze its data, and output reports is mandatory.

If the program terminates before this aspect is triggered, then all collected data

is lost. Consider the declaration

pointcut shutdown() : call(* *..System.exit(..));}

before() : shutdown() {
Store.getInstance().systemOutput();

}

40

that stops FlashLight before any call to System.exit() that occurs in the

program. This approach works well with most graphical applications.

Another typical pattern, which is useful for non-graphical Java programs, is to

stop FlashLight after the main method of the program finishes its execution.

pointcut shutdown() : execution(* Main.main(..));

after() : shutdown() {
Store.getInstance().systemOutput();

}

In both cases, the termination aspect calls the systemOutput method to direct

FlashLight to finish up and output its reports.

3.2 Running the Target Program

The programmer can invoke a large test suite or put the instrumented program

into any “production-like” situation he or she deems of interest. The goal is to stim-

ulate the execution of as many of dynamic paths within the program as possible so

that FlashLight can produce the best possible results for the programmer. Flash-

Light collects data as the program runs and creates web page reports about that

particular program execution.

3.3 Examining FlashLight Reports

FlashLight produces a suite of web page reports that a programmer can examine

to better understand the target program’s concurrency. Each instrumented program

generates four XML data files reporting the results of the analysis. XSL files are

used to present the XML file data in a web browser to the programmer. The web

page presentation of FlashLight results is currently the only method of viewing tool

output. However, we selected XML as the format of the tool’s output to facilitate

other views of the tool results in the future (e.g., a view of FlashLight results within

the Fluid assurance tool).

41

Figure 3.3: Structure of FlashLight Reports.

Figure 3.4: Results Home Page. This screen shot shows the home navigation page
for the results. This file list each output file associated with this execution of Flash-

Light.

42

Figure 3.5: Shared State. This report lists all field accesses by multiple threads
where at least one thread writes to the field. This screen shot shows field
requestCount and the three threads that accessed the field.

Figure 3.3 shows how FlashLight results are organized into four separate views.

The top level of each view summarizes the fields by package and class and the pro-

grammer can “drill down” to obtain more detail about a result of interest. From any

level the user can return to the top of the current page or the home page which is

shown in Figure 3.4. We now describe the contents of each report “view.”

• Shared state: This report lists all the fields that are accessed by multiple

threads regardless of locking protection. It reports any field that is accessed by

at least two threads where at least one access writes a value to the field. The

example in Figure 3.5 shows the field requestCount within the only instance of

the WorkThreadPool class has been accessed by three threads. The report uses

links to navigate through regions of the page. The underlined WorkThreadPool

object instance shown in Figure 3.5 is a link taking a programmer to more de-

tailed information about the field (within that instance), including stack traces

to help the programmer understand precisely how the state was shared and by

which threads.

• Potential races: This report lists all the fields that are accessed by multi-

ple threads where, at the time of access, no common lock is held by all the

threads. In addition to the inconsistent locks held, this view requires a field to

be shared. In Figure 3.6 we see the same field from Figure 3.5, requestCount,

only this report has categorized the field as a potential race condition based

43

Figure 3.6: A Potential Race Condition. This report lists all fields that are not
consistently protected by locks. This screen shot shows the field requestCount has
been accessed by three threads. The threads jEdit I/O #2 and jEdit I/O #4 held
the lock lock but the AWT-EventQueue-0 thread did not hold a lock.

Figure 3.7: A Proposed Lock Model. This report lists all fields that are consistently
protected by locks. This screen shot shows the field m isMoving has been accessed
by the threads client handler p1 and TurnCyclicBarrier. Both threads held a
lock on the Ship instance (which contains the field) when they accessed the field.
FlashLight has proposed a possible lock policy for this field via the Greenhouse-style
lock policy annotation @lock.

on inconsistent locking by threads during accesses. We see the threads jEdit

I/O #2 and jEdit I/O #4 held the lock lock when accessing the field but the

AWT-EventQueue-0 thread did not hold a lock during any of its accesses.

• Threading model and Locking model: This report contains two different

views of the same data. The threading model view reports consistently protected

fields based on what locks were held by the threads which accessed the fields.

The locking model view reports which locks consistently protected each field.

We see in Figure 3.7 the field m isMoving was protected by holding a lock on

44

its enclosing Ship instance. Both threads perform multiple reads and writes.

FlashLight cannot know the design intent of the developer with regard to how

accesses to the shared m isMoving field should be protected. However, based

upon what it has observed, FlashLight suggests a possible lock policy model

using the @lock annotation. This annotation should be viewed as a starting

point for program verification using the Fluid assurance tool.

For cases when FlashLight determines that a shared field is consistently pro-

tected, FlashLight suggests a locking policy for that field. This proposed locking

policy may or may not align with programmer intent (assuming such intent ex-

ists or is remembered). FlashLight proposes a locking policy via a “dynamic”

@lock annotation. There is an “impedance mismatch” between the dynamic

view of the lock policy and the static view of the lock policy that the program-

mer must reconcile, especially with respect to the proposed lock object. The

two types of “dynamic” @lock annotations reported by FlashLight are

1. @singleThreaded – this lock will be reported when a field is written during

object creation (i.e., field declaration, constructor, initializer block, etc.)

and all other access are read accesses.

2. @lock – used when all threads accessing a field hold a common lock. Un-

like the exact Fluid annotation that allows a lock to protect an abstract

grouping of fields, this notation declares an object protects a single field.

For example,

@lock firstReqLOCK is <lock>.java.lang.Object@10c99
protects firstRequest

means FlashLight has noted that a lock on the object lock is consistently

held by threads when they accessed the field firstRequest. Similar to

the “static” @lock notation we give the proposed “dynamic” lock an ex-

plicit name, firstReqLOCK in this example. There are two parts in our

“dynamic” lock policy notation to identify the lock: the context and the

referenced object. We refer to the first part as the context—how the ob-

45

ject is used to protect access. The context appears within the <>. There

are three types of contexts used in FlashLight this, CLASSNAME.class, or

OBJECTNAME.For a field protected by the current instance object (e.g., by

synchronized methods), the context reported is this. For a field protected

by locking on a class instance, the context of the lock is CLASSNAME.class,

where CLASSNAME is replaced by the actual name of the class. When a

field is protected by an object other than the current object, we use the

name of the object reference as the context. In the above example, an

object is protecting access to firstRequest, therefore the context is the

name of the reference, lock. The second part of the lock identifies the

(dynamic) referenced object. In the above example, the referenced object

is of type Object and has id 10c99 in the running program’s heap.

There are times when FlashLight finds that more than one lock protects

a field. In cases where multiple locks protect a field, FlashLight does not

guess which one is actually intended by the programmer. Instead, all of the

locks consistently held during field accesses are reported for programmer

consideration. In the output

@lock yCoordLOCK is <this>.Ship@1de6817 protects yCoord
@lock yCoordLOCK is <@singleThreaded> protects yCoord
@lock yCoordLOCK is <this>.Thread.135324 protects yCoord

the this context is ambiguous. It is for this reason we append the reference

object onto the context.

Finally, we caution that FlashLight infers lock policy models based on only one

execution of a program. Thus these proposed models are intended to be a starting

point, not a final model, for performing program verification using the Fluid assurance

tool.

3.4 Summary

This chapter presents, in three parts, how to use the FlashLight tool. First,

a user sets up the tool and tunes program specific instrumentation. While these

46

aspects are unique to each application, we present patterns which we have found

helpful when working with several target programs. Second, a user runs the target

program. Third, the user examines reports about the target program’s shared state,

potential race conditions, and proposed locking models. The proposed models can be

used as a starting point to assure aspects of the target program’s concurrency design

intent using the Fluid assurance tool.

47

IV. Tool Engineering

FlashLight is composed of three components that collaborate to collect the data,

store the data, analyze the collected data, and output the results of the analysis in

the form of programmer reports. These components, shown in Figure 4.1, are

1. The instrumentation that monitors the running program triggering necessary

data collection.

2. The data store that holds and organizes the collected data.

3. The analysis that examines the collected data and creates output reports for

the programmer.

The next three sections of this chapter describe each of these components in turn.

4.1 The Instrumentation

FlashLight’s instrumentation monitors the running program triggering neces-

sary data collection. In this section we describe the design and implementation of the

tool’s instrumentation. FlashLight uses two technical approaches to instrument the

running target program:

1. AspectJ, which we use to instrument field reads and writes, as well as to instru-

ment special lock acquisition and release method calls.

Reports

Lock Aquisition
and Release

Store Analysis

Field reads
and writes

data results

Running
Program

Instrumentation

Figure 4.1: An Overview of FlashLight’s Components.

48

1 pointcut readObject() : get(Object+*) &&
2 within(!edu.afit.dynamiclock.store..*);
3 pointcut writeObject() : set(Object+*) &&
4 within(!edu.afit.dynamiclock.store..*);
5

6 pointcut readPrimitive() : (get(int *) || get(double *)|| get(float *) ||
7 get(byte *) || get(short *) || get(long *) ||
8 get(char *) || get(boolean *)) &&
9 within(!edu.afit.dynamiclock.store..*);

10 pointcut writePrimitive() : (set(int *) || set(double *)|| set(float *) ||
11 set(byte *) || set(short *) || set(long *) ||
12 set(char *) || set(boolean *)) &&
13 within(!edu.afit.dynamiclock.store..*);

Figure 4.2: Pointcuts Matching Field Reads and Writes. Lines 1–2 match all reads
of reference fields and lines 3–4 match all writes to reference fields. Lines 6–9 match all
reads of primitive type fields and lines 10–13 match all writes to primitive type fields.
To instrument the target program only, and not FlashLight’s code, each pointcut
definition specifies that a match should not occur if the field access is within the
packages that contain the FlashLight source code.

after() : readObject() {
if (Store.getInstance().collecting()) {

JoinPoint tjp = thisJoinPoint;
Store.getInstance().addFieldRead(tjp.getSignature().getDeclaringType(),

tjp.getTarget(),
tjp.getSignature().getName(),
Thread.currentThread());

}
}

Figure 4.3: Advice for a Field Read. When AspectJ detects a read of reference
variable, it calls the addFieldRead method to direct the FlashLight data store to
record the data. This method receives the class of the object, the object containing
the field, the field name, and the thread that performs the read.

2. Source code rewriting, which we use to convert synchronized blocks into pairs

of method calls that signal lock acquisition and release.

AspectJ is our primary source of instrumentation. We use source code rewriting to

overcome a deficiency in the expressiveness of AspectJ ’s pointcuts. In the following

subsections, we describe how we use aspects to collect information about field accesses,

how we use a combination of source code rewriting and aspects to track the set of

locks each thread holds, and how we support the common Java programming idiom

of not locking during object initialization.

49

4.1.1 Detecting Field Reads and Writes. FlashLight uses AspectJ to capture

every field read and write. Our instrumentation captures every field read or write

made by the running program. AspectJ provides the pointcut get to match the join

points for all field reads and the pointcut set to match the join points for all field

writes. FlashLight uses four pointcuts to capture all of a program’s field access; these

are shown in Figure 4.2.

The advice (i.e., the code triggered by a field read or write) reports data to

the FlashLight store as shown in Figure 4.3. The data is only reported if the store

is currently collecting data. The data store is collecting data when its collecting

method returns true.

It is possible to tune the field instrumentation to record data for specific classes

or packages only within a target program. The programmer would do this by adding

more within restrictions to the pointcuts shown in Figure 4.2. These restrictions

would be syntactically similar to the pointcuts that currently exclude the FlashLight

source code. We used this type of tuning during our commercial case study to exclude

several utility packages that were uninteresting from the point of view of concurrency.

4.1.2 Tracking Locks. Instrumentation to track the set of locks each thread

holds is done using both AspectJ and source code rewriting. Source code rewriting is

required because an AspectJ pointcut can not “trigger” advice at the beginning and

end of a synchronized method or block. This is a known limitation of the AspectJ

language. To solve this problem, we constructed a source code rewriter for FlashLight

that introduces identifiable method calls that our AspectJ instrumentation is able to

trigger on.

An example of the transformations the source code rewriter performs is shown in

Figure 4.4. The rewriter is implemented in a manner similar to an Eclipse refactoring

and is invoked as shown in Figure 3.1 (on page 36). The rewriter uses a flow-insensitive

intra-procedural static analysis to find every instance of the synchronized keyword

and transforms its associated method or block. The transformation inserts method

50

public class RewriterDemo {
final Object lock = new Object();
synchronized void m1(){

// do something
}
static synchronized void m2(){

// do something
}
void m3() {

synchronized(lock){
//do something

}
}

}

public class RewriterDemo {
final Object lock = new Object();
synchronized void m1(){

try {
edu.afit.dynamiclock.store.LocksHeld.acquire(this, "this");
// do something

} finally {
edu.afit.dynamiclock.store.LocksHeld.release();

}
}
static synchronized void m2(){

try {
edu.afit.dynamiclock.store.LocksHeld.acquire(Demo_Rewriter.class,
"Demo_Rewriter.class");

// do something
} finally {
edu.afit.dynamiclock.store.LocksHeld.release();

}
}
void m3() {

{
java.lang.Object ___A_F_I_T_000000 = lock;
synchronized(___A_F_I_T_000000){
try {

edu.afit.dynamiclock.store.LocksHeld.acquire(___A_F_I_T_000000, "lock");
//do something

} finally {
edu.afit.dynamiclock.store.LocksHeld.release();

}
}

}
}

}

Figure 4.4: Rewriting the RewriterDemo Class. The original class is shown above its
output from the FlashLight source code rewriter. The RewriterDemo class contains
code that triggers each of the three transformations performed by the FlashLight

source code rewriter: (1) a synchronized method, (2) a static synchronized method,
and (3) a synchronized block. The inserted FlashLight calls denote the boundaries
of when a lock is acquired and released. The try-finally blocks are introduced
to ensure that variable names are not masked and that the program’s exceptional
behavior is unchanged.

51

pointcut lockAcquire() : call(* edu.afit.dynamiclock.store.LocksHeld.acquire(..));
pointcut lockRelease() : call(* edu.afit.dynamiclock.store.LocksHeld.release(..));

after() : lockAcquire() {
JoinPoint tjp = thisJoinPoint;
String filename = tjp.getSourceLocation().getFileName();
String linenumber = String.valueOf(tjp.getSourceLocation().getLine());
Object[] callArgs = thisJoinPoint.getArgs();
LocksHeld.acquireLock(callArgs[0], (String) callArgs[1], filename, linenumber);

}
after() : lockRelease() {
LocksHeld.releaseLock();

}

Figure 4.5: Pointcuts and Advice for Lock Acquisition and Release. The
lockAcquire advice captures the object being locked, the context of how the ob-
ject is being used, and the filename and line number of the lock acquisition. The
lockRelease advice “pops” the lock from our set of locks held by the thread which
released it.

calls into the source code providing AspectJ access to the object being locked and

the name or context of the locking object (as discussed below). The context of the

locking object is used to provide insight into how the locking object is being used to

protect the field. The position of the inserted calls frames the duration during which

the lock is held.

With the rewritten source, we can now use AspectJ to collect when locks are

acquired and released by each thread within the running program. AspectJ uses a

call pointcut to match join points associated with the lock acquisition and release

calls inserted by the FlashLight source code rewriter. The data store maintains a

list of locks held for each thread. Figure 4.5 shows the lock acquisition and release

pointcut and advice. You may wonder why we use a combination of source code

rewriting and AspectJ to handle synchronization when it would appear that source

code rewriting could be used exclusively. We still make use of AspectJ in this case

because we can make use of dynamic information within advice that would not be

available to the static source code rewriter.

4.1.3 Tracking Object and Class Initialization. In Java, it is typical that

programmers do not protect object (and class) initialization by locking. This apparent

52

pointcut initGet() : cflow(initialization(*.new(..))) && get(Object+*)
pointcut staticInitGet() : cflow(staticinitialization(*)) && get(Object+*)

pointcut initSet() : cflow(initialization(*.new(..))) && set(Object+*)
pointcut staticInitSet() : cflow(staticinitialization(*)) && set(Object+*)

Figure 4.6: Initialization Pointcuts. These pointcuts match all field reads (get)
and writes (set) that occur during object or class initialization.

violation of locking discipline is, however, safe in most cases. The practice is safe

during construction because only the thread that invoked the constructor has access

to the object’s state, i.e., the object doesn’t become shared state until after it is fully

constructed. This practice becomes unsafe only if the constructor, while it is running,

leaks a reference to the object under construction to another thread.1

To accommodate this idiom, we define additional advice that executes before

and after our normal field access advice. We add a fake @singleThreaded lock to the

set of locks held by the current thread. This fake lock communicates to the Flash-

Light analysis that the field read or write occurred within the boundaries of a Java

constructor or initialization block.

Figure 4.6 shows the pointcuts we use to detect field reads and writes during class

or object initialization. The instrumentation uses two additional AspectJ pointcuts

staticinitialization and initialization. The staticinitialization point-

cut captures class creation while initialization pointcut captures object creation.

Aspect advice can be executed before or after a join point. The aspects in Figure 4.7

take advantage of this capability to acquire and release the @singleThreaded lock.

4.2 The Data Store

The FlashLight data store, or more simply “the store”, organizes and stores

the collected data in a manner that facilitates its subsequent analysis. The store is

implemented in Java, not AspectJ. We made a design decision to limit AspectJ code

1While artificial Java programs that leak references to objects under construction are straight-
forward to construct, the Fluid team has only noticed this in real code when an object under
construction registers itself as an observer to some (concurrent) component.

53

before() : initSet() || staticInitSet() {
JoinPoint tjp = thisJoinPoint;
...
if (tjp.getThis() == null){ // class initialization

LocksHeld.acquireLock(tjp.getSignature().getDeclaringType(),
Store.getInstance().getLockingString());

} else { // object initialization
LocksHeld.acquireLock(tjp.getThis(), Store.getInstance().getLockingString());

}
Store.getInstance().addFieldWrite(tjp.getSignature().getDeclaringType(),

tjp.getTarget(),
tjp.getSignature().getName(),
Thread.currentThread(), true);

}

after() : initSet() || staticInitSet() {
LocksHeld.releaseLock();

}

Figure 4.7: Initialization Field Write Advice. This advice triggers be-
fore and after the join points matched by the pointcuts shown in Fig-
ure 4.6. The before() advice acquires the @singleThreaded lock (represented by
Store.getInstance().getLockingString()) before our normal field write advice is
invoked (as described in Section 4.1.1). The @singleThreaded lock is released by the
after() advice which is invoked after our normal field write advice. The specification
of initialization field read advice is similar.

to the instrumentation portion of our tool implementation. Our rationale for this

decision is that AspectJ is an evolving language and far less stable than Java. This

design decision also ensures that we can change our technical approach to FlashLight

instrumentation (thereby removing our dependency on AspectJ) with little impact

on the rest of the implementation. We also note that the tools for developing and

debugging standard Java are, currently, far superior to AspectJ. Limiting, as much as

possible, the amount of AspectJ code within the FlashLight tool improves our tool

design with respect to future flexibility.

An important design consideration of the FlashLight data store was to properly

protect its contents from concurrent access. Therefore, we documented and verified

the data store’s locking policy using the Fluid assurance tool.

4.2.1 Instrumentation–Store Interaction. This section describes the interac-

tion between the instrumentation and the data store using a series of UML sequence

diagrams. These sequence diagrams provide examples of how data is collected about

54

the running program. The instrumentation “triggers” the collection and is responsi-

ble to extract the “raw” data from the running program. The instrumentation then

sends the raw data into the data store. The data store is responsible for storing and

organizing the data.

The first sequence diagram shows the dynamic interaction of objects in the data

store as they record a field access triggered by our AspectJ instrumentation. Here we

combine reads and writes into accesses. 1© elides the interaction required to obtain

(and possibly create) the correct PerThreadData object for the state accessed. This

interaction is detailed in the next sequence diagram. The PerThreadData object

contains all the data FlashLight collects about a piece of state per thread.

: Store ptd : PerThreadData

incrementAccessCount()

setLocksHeld (getLocksHeld (Thread))

: Quantum

FieldAccess
(field, object, class, thread)

getPerThreadData
(field, object, class, thread)

1
ptd

The PerThreadData object has its read or write count incremented (depending upon

the type of access the instrumentation detected) and is informed of the locks held by

the thread when the access occurred.

The next sequence diagram shows the first access of a field by any thread. A

FieldInstance object is created to identify, to the data store, a particular piece of

state (i.e., a field within a particular object instance). A PerThreadData object is

55

constructed to record the number of reads and writes of this state by one thread. The

PerThreadData object contains all the data FlashLight collects about a piece of state

per thread.

: Quantum

add(f, s)

getPerThreadData
(field, object, class, thread)

<<create>>

<<create>>

add(ptd)

ptd : PerThreadData

ptd

s : Set<PerThreadData>f : FieldInstance

A map from FieldInstance objects to a set of PerThreadData objects (one per

thread which accesses the field) is maintained by the quantum. This interaction

results in a reference to the correct PerThreadData object, ptd, being returned to the

caller.

The sequence diagram below shows how the data store tracks lock acquisitions

and releases by threads. The instrumentation calls the acquireLock method on the

singleton LocksHeld object. This call is made by the thread acquiring the lock, so

by obtaining the current thread, the data store is able record the lock acquisition for

the correct thread.

56

: LocksHeld: Aspect -- LockingCall

acquireLock(ObjectLock)

release()

addLockHeld

removeLockHeld

The instrumentation calls the release method to inform the data store that the lock

has been released. The LocksHeld class maintains a list of locks currently held by

every thread in the program.

The final sequence diagram shows the steps to perform data analysis and output,

for each quantum, reports for the programmer. The request to terminate FlashLight

originates from the program-specific aspects. At this point, the tool stops collecting

data and runs data analysis for each quantum. The shared state algorithm produces

the shared state report. The lock-set algorithm produces two reports: the potential

race detection report and the threading model report. The fourth report, the locking

model output, is produced based on the threading model report.

57

: Store : Quantum : StoreOutput

Shutdown

Write XML files

Generate Potential Race
Condition Output

Generate Threading
Model Output

Generate Shared
State Output

Generate Locking
Model Output

Shared State
Analysis

Lock-set
Analysis

Output reports take the form of XML files that are created in the xml folder at the

root of the program’s Eclipse project.

4.2.2 Object Model. Figure 4.8 shows the UML class diagram of our design

for the FlashLight data store. An example UML object diagram, corresponding to

Figure 4.8, is shown in Figure 4.9. This object diagram shows the store organization of

the data collected on a subset of the fields from the Maze ADT example (described in

Chapter I). The object diagram contains three FieldInstance objects: pointList,

c, and Maze size. We note that pointList and c represent fields of the same Maze

object instance. The fields pointList and c are accessed by two threads main and

AWT-EventQueue-0, and are mapped to sets of PerThreadData objects that represent

these threads

We now describe the classes in Figure 4.8 using Figure 4.9 as an example.

58

edu.afit.dynamiclock.store

ObjectLocks

-lockingContext: String

-lockingObject: Object

-linenumber: String

-filename: String

 getLockingObject()

 getContext()

 getFileName()

 getLineNumber()

FieldInstance

-f_tjpField: String

-f_classObject: Object

-f_thisObject: Object

-f_packageName: String

 getField()

 getClassObject()

 getThisObject()

 getPackageName()

 1

*

StackTraceInstance

-f_count: long

-f_trace: StackTraceElement[]

 incrementCount()

 getTraceIndexed()

 getStackTraceElement()

 getCount()

Store

-INSTANCE: Store

-ARTIFACT_COLLECTION: boolean

-f_quantumList: List<Quantum>

-f_currentQuantum: Quantum

-SINGLE_THREADED: String

+getInstance(): Store

+addFieldRead(): void

+addFieldWrite(): void

+advanceQuantumWithCollection(): void

+advanceQuantumNoCollection(): void

+collecting(): boolean

+getLockingString(): String

+systemOutput(): void
1

*

1

*

PerThreadData

-f_thread: Thread

-f_readCount: long

-f_writeCount: long

-f_readStackTraceList: List<StackTraceInstance>

-f_writeStackTraceList: List<StackTraceInstance>

-f_locksHeld: List<ObjectLocks>

 getLocksHeld()

 getReadCount()

 getReadStackTrace()

 getThread()

 getWriteCount()

 getWriteStackTrace()

 incrementReadCount()

 incrementWriteCount()

 setLocksHeld()

 setReadStackTrace()

 setWriteStackTrace()

Maps To

*

1..*

Quantum

-f_objectMap: Map<FieldInstance,Set<PerThreadData>>

 getPerThreadData()

 analyzeLocksHeld()

 analyzeSharedState()

fI:FieldInstance

LocksHeld

-f_threadMap: Map

 acquireLock()

 releaseLock()

 getLocksHeld()

 Holds Locks

StoreOutput

-f_instance: StoreOutput

 getInstance()

 createXML()

 outputXML()

 generateSharedStateXML()

 generatePotentialRaceXML()

 generateThreadingModel()

 Output

F
igu

re
4.8:

C
lass

D
iagram

for
th

e
S
tore

P
ackage.

59

Sets of

PerThreadData

objects

pointList : FieldInstance

f_field = "pointList"
f_classObject = "Maze"
f_thisObject = "Maze@1234"

maps To

main : PerTthreadData

f_thread = "main"
f_readCount = "18517"
f_writeCount = "1"

objLock2: ObjectLocks

lockingContext = "@singleThreaded"
lockingObject = "Maze@1234"

 locksHeld

AWT-Thread : PerTthreadData

f_thread = "AWT-EventQueue-0"
f_readCount = "96"
f_writeCount = "0"

objLock1: ObjectLocks

lockingContext = "this"
lockingObject = "Maze@1234"

 locksHeld

Maze_Size : FieldInstance

f_field = "Maze_Size"
f_classObject = "MazeWalk"
f_thisObject = "MazeWalk@4321"

maps to

main : PerTthreadData

f_thread = "main"
f_readCount = "18"
f_writeCount = "1"
f_locksHeld = "null"

c : FieldInstance

f_field = "c"
f_classObject = "Point"
f_thisObject = "Maze@1234"

maps To

main : PerTthreadData

f_thread = "main"
f_readCount = "0"
f_writeCount = "1587"

objLock4: ObjectLocks

lockingContext = "this"
lockingObject = "Maze@1234"

 locksHeld

AWT-Thread : PerTthreadData

f_thread = "AWT-EventQueue-0"
f_readCount = "18517"
f_writeCount = "1"

objLock3: ObjectLocks

lockingContext = "this"
lockingObject = "Maze@1234"

 locksHeld

Figure 4.9: Object Diagram of the Data Store for the Maze ADT Program. The di-
agram shows collected data about three fields within the program: Maze.pointList,
Point.c, and MazeWalk.Maze Size. The Maze ADT program was described in Chap-
ter I.

60

4.2.3 Store. The store class implements a Façade to control access to the

FlashLight data store from the instrumentation. The instrumentation reports raw

data to this interface. For each field access, the instrumentation records

• The object representing the class of the accessed field.

• The object representing the object of the accessed field.

• The string representing the name of the field.

As well as the following characteristics about the type of access:

• The type of access {READ, WRITE}.

• The thread object accessing the field.

• Any object used as a lock to protect the field access.

The store class combines the field information (class, object, field name) into a new

object representing each field. These objects are called FieldInstance objects.

4.2.4 FieldInstance. A unique FieldInstance instance is created for each

element of possibly shared state accessed by the program. It represents a field within

an object on the program’s heap. These objects are used by the data store as unique

identifiers to a particular piece of state. Thus, they are typically used as the key in

maps to data about the program’s use of that state. For example, in Figure 4.9, the

pointList and c fields map to two PerThreadData objects which hold information

about accesses to the corresponding field by those threads.

4.2.5 Quantum. FlashLight, as described in Chapter III, allows the pro-

grammer to partition the running program into time quantums. The Quantum class

in Figure 4.8 serves as a container for all data collected during a programmer-defined

time quantum. Therefore in our design, the object diagram shown in Figure 4.9

represents the contents of a Quantum object.

61

Multiple threads can access any field, therefore a set of PerThreadData objects

is referenced by each FieldInstance in the quantum’s map. The map contains a

record of all the fields accessed during the quantum (i.e., the FieldInstance objects)

and records information about each field access based on the thread accessing the

field (i.e. the PerThreadData objects).

The Quantum class contains a method getPerThreadData that returns the cor-

rect PerThreadData object for a given field and thread. If the given field has been

accessed previously by this thread (i.e., it exists as a key in the quantum’s map)

then an existing PerThreadData object is returned, otherwise a new PerThreadData

object is created.

4.2.6 PerThreadData. PerThreadData objects track every access of a field

by a particular thread. The number of times a thread reads or writes a field is tracked

by counters within the PerThreadData object. The PerThreadData object also keeps

two lists, one for reads and one for writes, that contain stack traces documenting how

the program reached a particular read or write. To limit memory consumption of

FlashLight, the number of stack traces collected may be restricted by the programmer.

A PerThreadData object also references a list of locks held by this thread when

accessing the field. Every time a thread accesses a field, the list of locks held is refined

by intersecting the list of locks held at previous accesses with the locks held at the

current access. The list of locks held only contains locks consistently held for all

field accesses by this thread. This list is the first part of the lock-set algorithm. The

analysis assumes each PerThreadData object maintains its own list. At each repeated

field access the PerThreadData object contains the locks that are consistently held

by this thread.

4.2.7 StackTraceInstance. A stack trace is generated for each field access.

The stack trace is generated by throwing an exception and then catching it to obtain

the associated stack trace array. Stack trace arrays are stored in StackTraceInstance

62

objects. Each StackTraceInstance object contains the trace array and the num-

ber of times it is generated by a thread. The PerThreadData objects compare

StackTraceInstance objects and only store unique instances in the stack trace list.

4.2.8 ObjectLocks. The instrumentation provides additional information

concerning objects used as locks. Two pieces of information are gathered about each

object used as a lock: the object reference and the context of how the lock is used.

The object reference allows us to identify locks in the presence of aliases. The context

provides insight into how the lock is syntactically referenced in the program. For

example, when a field is accessed within a synchronized method the context of locks

protecting the access is this because that is the reference used to refer to the lock

object.

4.2.9 StoreOutput. The StoreOutput class is used to report the results of

the analysis. XML files are created to report results from the shared state algorithm

and lock-set algorithm. Our tool output is described in Section 3.3 (on page 41).

4.2.10 LocksHeld. The LocksHeld class contains a mapping of threads to a

list of the locks held by that thread. Thus, it is responsible for tracking the current set

of locks held by each thread in the running program. Then when a field is accessed,

the Store object requests the list of locks held by the thread accessing the field.

4.3 The Analysis

FlashLight performs several analyses based on the data store. These analyses

adhere to the formalisms defined in Section 2.1. In this section we describe our

shared state and lock-set algorithms, the enhancements to the lock-set algorithm we

implement, and describe how the lock-set algorithm infers Greenhouse-style [8] locking

models.

63

4.3.1 Shared State Algorithm. The shared state algorithm executes on

each quantum in the store. The shared state algorithm classifies fields as shared

when, two threads access the field and at least one access is a WRITE. For example,

referring to Figure 4.9, the object diagram contains three FieldInstances. Each

FieldInstance maps to a set of PerThreadData objects. The PerThreadData objects

contain information about the threads accessing the fields. For two FieldInstances,

representing the pointList and c fields, the size of the Set is greater than one. This

implies more than one thread accesses this field. We also see at least one thread writes

a value to each field. Based on this example, FlashLight reports the fields pointList

and c as shared.

The shared state algorithm does not consider how fields are protected from

concurrent access. We implement a lock-set algorithm to determine if fields are con-

sistently protected.

4.3.2 Lock-Set Algorithm. The lock-set algorithm executes on each quantum

in the store, just as in the shared state algorithm. The lock-set algorithm, however,

evaluates the held locks by all thread for each field access. Referring to Figure 4.9,

we see through the locksHeld association, each PerThreadData object maintains a list

of locks consistently held while accessing its associated field. The lock-set algorithm

creates a list of all locks held by all threads accessing a field. The allLocksHeld list

is generated by adding each unique held lock by any thread accessing a field.

Recall our formalism for determining a race condition from Section 2.1.2. The

lock-set algorithm iterates through the set of PerThreadData objects, comparing the

held locks of each PerThreadData object against the allLocksHeld list. If a lock is

in the allLocksHeld list and not in a PerThreadData objects held locks list, then

the lock is removed from the allLocksHeld list because this lock in not consistently

held by all threads. The lock-set determines if a field is consistently protected by

iterating over the entire set of PerThreadData objects for a FieldInstance. If the

allLocksHeld list is empty a potential race condition warning is passed to the output.

64

For example, using the FieldInstance c in Figure 4.9, we show how the lock-set

algorithm determines a field is consistently protected. We construct the allLocksHeld

list containing one object, objLock3. In this case, the lock-set algorithm only adds

one ObjectLock object to the list because the objects represent the same lock.

The lock-set algorithm compares the held locks for each PerThreadData against the

allLocksHeld list. The lock-set algorithm produces an allLocksHeld containing one

ObjectLocks object because the held locks for each PerThreadData object contains

the lock. The results report field c is consistently protected by locking on the Maze

instance.

As a rule, an empty allLocksHeld list implies a potential race condition. How-

ever, as stated in [20] there are common programming practices that safely access

fields that violate the lock-set algorithm. Our lock-set algorithm accounts for two of

these special cases.

4.3.3 Lock-Set Support for Java Programming Idioms. We discovered dur-

ing our case studies that the basic lock-set algorithm reports common programming

idioms as race conditions. We modify the lock-set algorithm to handle these idioms

and, therefore, reduce the number of false positives reported by FlashLight.

As discussed in Section 4.1.3, the instrumentation adds a fake @singleThreaded

lock to the held locks list for any thread accessing a thread during a constructor. We

see in Figure 4.9 the main thread acquires the @singleThreaded lock when accesses

pointList. The @singleThreaded lock allows the lock-set algorithm to distinguish

between protected field accesses and constructor field accesses. The held locks for any

PerThreadData object holding the @singleThreaded lock is not compared against

the allLockHeld list, preventing the lock-set algorithm from reporting constructor

accesses as potential races.

Consider the pointList FieldInstance in Figure 4.9. The allLocksHeld list

for this field contains two ObjectLocks objects, objLock1 and objLock2. The object

objLock2 refers to the @singleThreaded lock. The lock-set algorithm iterates over the

65

held locks for each PerThreadData object producing an allLockHeld list containing

one object, objLock1. The results will report field pointList is consistently protected

by locking on the Maze instance.

The modification to our lock-set algorithm reduces the number false positives

reported. These fields are properly reported as being consistently protected, thus

allowing the algorithm to infer a lock policy model for the fields.

4.4 Summary

This chapter presents the design and implementation of the three primary com-

ponents of the FlashLight tool. The instrumentation component observes the running

program and reports raw data. This raw data is organized and stored by the data

store component. The organized data is then analyzed to produce output reports for

the programmer.

66

V. Case Studies

We applied FlashLight to a number of concurrent Java programs including educa-

tional software, an established open source project, and a commercial system. Sum-

mary information on these programs is shown in the table below.

System kSLOC Description
FleetBaron 3 Network-based real-time strategy game
jEdit 72 A widely used open source text editor
Commercial 100 A shipping web application server

We performed the study of FleetBaron and jEdit at AFIT; we performed the

commercial case study on-site with the help of the programmers that develop and

maintain the system. The author did not perform the commercial case study: a

committee member, Lt Col Halloran, performed this case study.

We discuss the FleetBaron case study in Section 5.1, the jEdit case study in

Section 5.2, and the commercial case study in Section 5.3. In Section 5.4 we present

the runtime overhead we observed when running a target program with FlashLight

collecting data.

In each of our case studies, FlashLight found potential race conditions. In a few

instances, such as a field in jEdit, the race condition was obvious based on inspecting

the source code guided by FlashLight’s output. In other examples, we were unable to

determine if a real program fault existed, primarily due to our limited understanding

of the program (especially in the case of jEdit and the commercial web application

server). We used the jEdit case study to test the potential utility of the suggested

locking models when using FlashLight as a starting point for program verification

using the Fluid assurance tool. We describe, in Section 5.2.2, a case where a Flash-

Light proposed locking model was successfully used to verify the locking model of a

jEdit class using the Fluid assurance tool.

67

Figure 5.1: This screen shot shows a player interface from FleetBaron. This player
interface shows two players, p1 and p2. The planets captured by p2 are shown in
white and planets captured by p1 are shown in red. While not shown, the FleetBaron
server maintains the state of the game, coordinates interaction of the clients.

68

5.1 FleetBaron

The FleetBaron software is used as part of the software engineering curriculum

at AFIT. FleetBaron is a concurrent, client-server based, multi-player game. The

concept of the game is to “fly” your ship around the galaxy and capture as many

planets as possible. The multithreaded game server creates a thread to serve each

client. The server also creates threads to maintain the game state by controlling when

events occur in the game. Additionally, the server coordinates all player communi-

cations. The clients communicate through sockets with the server to share the state

of the game. Each client displays the game state to the user via the GUI shown in

Figure 5.1

We selected FleetBaron as our first case study because of our familiarity with its

design and implementation. It was primarily used as a test case for the development

of FlashLight. This case study tested our concept of dynamic instrumentation via

AspectJ, our ability to store collected data, our lock-set implementation, and our

output reports.

5.1.1 Lessons Learned from FleetBaron. Our experience with FleetBaron

exposed some areas within our early tool that needed improvement. We summarize

some of our observations below.

• Tool output. The early output lacked any formatting. Instead, we dumped the

results into a text file. The text file contained all the information about each field

access, however it lacked organization making the tool output unintelligible. We

modified the output to create XML files. We also constructed XSL style sheets

to organize and present the information from the XML files in a clear, concise

format. This improvement in the output format allowed detailed inspection of

the results by all users of FlashLight.

• What constitutes a race condition? We observed that the analysis was

reporting a high number of false positive race conditions after reviewing out-

69

put produced by running FleetBaron. FlashLight was reporting the majority

of shared fields as potential race conditions. Investigation of these reports in-

dicated that these reports were due to no locks being held during object con-

struction. As described in Section 4.1.3, we refined our instrumentation and

analysis to account for the common Java programming idiom of not protecting

shared stated during object construction. This significantly reduced the number

of false positive race conditions reported.

• Odd locking. Another observation from the FleetBaron case study involves a

field within different object instances being consistently protected by different

locks. One example of these multiple instances is shown in Figure 5.2. During

one execution of FleetBaron, the server accessed the yCoordinate field of three

different Location objects. For two of the Location objects, FlashLight detects

the same locking policy: the lock <this>.edu.afit.fleetbaron.common.game.Ship@13582d.

For the remaining instance, however, FlashLight detects that access to yCoor-

dinate is protected by three locks:

– <this>.edu.afit.fleetbaron.common.game.Ship@13582d

– <@singleThreaded>.(12,15)

– <this>.Thread[client handler p1,5,]

This location instance is different from all other locations, because the first

player’s ship starts at this location. This object instance is an example of how

FlashLight handles the programming idiom of single threaded constructors. By

drilling down into the FlashLight’s results we see why the location instance,

(12,15), appears to be protected by three locks. The two write accesses per-

formed by the client handler p1 thread initialize the location object and

add the <this>.Thread[client handler p1,5,] and <@singleThreaded>.(12,15)

to held locks list. The other field accesses by the client handler p1 thread

hold these locks, and in addition they also hold the <this>.edu.afit.fleetbaron.co

mmon.game.Ship@21b6d lock. The second thread, TurnCyclicBarrier, ac-

70

Figure 5.2: Several proposed locking models for the yCoordinate field in the
Location class. The first two accesses are consistently protected by the lock
<this>.edu.afit.fleetbaron.common.game.Ship@13582d. The third instance is pro-
tected by this lock and two additional locks. In cases when more than one lock pro-
tects a field access, FlashLight reports all locks consistently held during all accesses
of a field for each instance.

71

cesses the field once and holds a @singleThreaded lock on the (12,15) location

instance. During the lock-set analysis any lists of locks containing a @sin-

gleThreaded lock as the last lock acquired are not intersected against other list

of held locks. Therefore, all three locks are reported as being consistenlty held

for these field accesses.

The common protection idiom is to protect a field with a single lock. Because our

analysis does not account for programmer intent, FlashLight reports all locks

consistently held at each field access for that instance. In the above example, all

field accesses of yCoordinate not within a constructor are consistently protected

by locking on the object instance Ship@13582d. As we discussed, the Location

instance, (12,15), reports three held locks because of FlashLight’s handling of

the programming idiom of single threaded constructors.

5.2 jEdit

After we implemented our refinements from the FleetBaron case study, we per-

formed another case study using the programmer’s text editor, jEdit. We selected

jEdit because it is a freely available, roughly 72kSLOC, production quality, Java-based

multithreaded application. jEdit can be downloaded from the the project website and

used with any operating system. The case study used jEdit version 4.3.

Our case study consisted of running jEdit from within Eclipse and manipulating

a jEdit buffer (i.e., using the program as a text editor). We performed a Find and

Replace operation on the buffer and replaced two strings. We selected this operation

because it is multithreaded. Upon the completion of the Find and Replace operation

the buffer was closed and we exited jEdit.

5.2.1 Lessons Learned from jEdit. We summarize some of our observations

from using FlashLight on jEdit below.

72

1 pointcut steadyState() : call(* *..jEdit.finishStartup(..));
2

3 before() : steadyState() {
4 Store.getInstance().advanceQuantumWithCollection("Steady State","jEdit");
5 }

Figure 5.3: An example of the pointcut to start data collection for jEdit. This
pointcut advances the quantum after the application completes its initialization.

• Pointcut discovery. Determining which join points to match to advance the

quantum takes reasoning about the application. The most complete results are

obtained from FlashLight by using a single quantum. However, precise quantum

definitions can be used to decrease the overhead introduced by FlashLight.

• Initial pointcut. The instrumentation provides options when to start and stop

data collection by designating program specific aspects. The large size of jEdit

requires attention to when to begin the data collection to reduce overhead. The

jEdit startup phase includes building the GUI. The GUI contains fields that do

not need to be captured or analyzed. Therefore, data collection is not started

until after jEdit completes the start up phase. Figure 5.3 shows a pointcut

matching a method call to finishStartup that indicates jEdit is done starting

up. This pointcut weaves in advice to advance the quantum and start the

instrumentation.

• Termination pointcut. Another pointcut is created to terminate collection,

run the analysis, and output the results. This pointcut matches any calls to

System.exit() from jEdit. Therefore, when Exit is selected from the program’s

GUI menu, the FlashLight analysis runs and outputs its results to the xml folder

and then jEdit exits.

• Running jEdit. Running FlashLight on a project the size of jEdit was an

obvious concern. Will FlashLight scale to a project this size? jEdit executed

with only minimum lag while FlashLight executed. We observed that jEdit

took 1.7 times longer to execute with FlashLight instrumentation compared

with a non-instrumented execution. The most noticeable lags occurred with

Input/Output operations, when jEdit was performing background work.

73

• Compile time. The AspectJ compiler is not as refined as the standard Java

compiler. There is a noticeable difference between compiling an application

with the standard Java compiler and compiling the same application with the

AspectJ compiler.

• Evaluating the output. The output files have gone through numerous iter-

ations to improve their presentation. In addition to the presentation, we also

improved some functionality such as embedded navigation links. These links

allowed a user to navigate within a file and also back to home page.

5.2.2 Verifying a jEdit Locking Model. During our jEdit case study we used

the Fluid assurance tool to verify a jEdit locking model proposed by FlashLight. In

this section we describe the process used our observations.

FlashLight reported that there were three shared fields within the ReadWriteLock

class: activeReaders, activeWriters, and writerThread. FlashLight further re-

ported that all three fields were consistently protected by a lock held on their enclosing

instance object, i.e., this. FlashLight proposed three “dynamic” lock policies:

@lock activeReadersLock is <this>.ReadWriteLock@10e6233
protects activeReaders

@lock activeWritersLock is <this>.ReadWriteLock@10e6233
protects activeWriters

@lock writerThreadLock is <this>.ReadWriteLock@10e6233
protects writerThread

Using the “dynamic” lock policies as a starting point we annotated the source

code as shown in Figure 5.4. At line 2, we declare a region, called RWLockRegion

that is defined to contain the three fields. At line 3, we specify that a lock on this

protects all access to data in RWLockRegion.

The Fluid assurance tool did not find our model consistent with the jEdit im-

plementation. It found 6 out of 18 field accesses were unprotected (i.e., the analysis

could not verify the lock was held). Examining the unprotected field accesses we

discovered that they were within methods where acquiring the lock was the callers re-

sponsibility: i.e., holding the lock was a precondition to calling the method. In Fluid,

74

1 /**
2 * @region RWLockRegion

3 * @lock rwLock is this protects RWLockRegion

4 */
5 public class ReadWriteLock {
6

7 /**
8 * @mapInto RWLockRegion

9 */
10 private int activeReaders;
11

12 /**
13 * @mapInto RWLockRegion

14 */
15 private int activeWriters;
16

17 /**
18 * @mapInto RWLockRegion

19 */
20 private Thread writerThread;
21

22 public synchronized void readLock() {
23 if (activeReaders != 0 || allowRead())
24 ++activeReaders;
25 ...
26 }
27

28 public synchronized void readUnlock() {
29 --activeReaders;
30 ...
31 }
32

33 public synchronized void writeLock() {
34 if (allowWrite())
35 ...
36 }
37

38 public synchronized void writeUnlock() {
39 --activeWriters; writerThread = null;
40 ...
41 }
42

43 /**
44 * @requiresLock rwLock

45 */
46 private boolean allowRead() {
47 return (Thread.currentThread() == writerThread)
48 || (waitingWriters == 0 && activeWriters == 0);
49 }
50

51 /**
52 * @requiresLock rwLock

53 */
54 private boolean allowWrite() {
55 return activeReaders == 0 && activeWriters == 0;
56 }
57 }

Figure 5.4: The elided ReadWriteLock class with Fluid promises added to precisely
specify its lock policy: when accessing the fields activeReaders, activeWriters,
and writerThread a lock on the object instance (i.e., this) must be held. The Fluid
assurance tool verifies this lock policy is consistent with the code.

75

this is indicated by annotating these methods with a @requireslock annotation as

seen at line 44 and 52 in Figure 5.4. With this additional piece of design intent, the

Fluid assurance tool was able to verify code–model consistency.

We did find FlashLight helpful in focusing our work with the Fluid assurance

tool. As seen in the example described above, a “programmer-in-the-loop” is required

to develop, from the FlashLight proposal, a verifiable lock policy model. Future work

may be able to lower the gap between the FlashLight output and a verifiable lock

policy model.

5.3 Commercial Case Study

FlashLight was used during a commercial case study on a commercial web

application server. This was a high-quality shipping product in use at hundreds of

customer locations. The case study was conducted on-site at the location where

the software was developed and maintained and with the assistance of the product’s

programming team.

The focus of the study was not to try out the FlashLight tool, however, one of

the developers became very interested in trying FlashLight based upon an overview

of the tool presented on the first day of the case study. This developer wanted to gain

a better understanding of the concurrency within the overall “thread pool” for the

application server.

Configuration of FlashLight for this case study was non-trivial because the

commercial web application server could not be run from within Eclipse. In addition,

the server could not be run on a Java 5 JRE, it required a specific Java 2 JRE to run

correctly. Therefore, portions of the FlashLight source code had to be “back-ported”

to Java 2 on-site. This process that took roughly two hours to accomplish.

It took four hours (of iterative trial and error) to produce a FlashLight instru-

mented version of the web application server. The application server ran as expected,

but with a noticeable requirement for additional memory due to the large number

76

of threads the server managed. The tool output described the shared state between

the hundreds of Java threads the server was managing. The first run produced over

100 MBytes of output, so the instrumentation was tuned to focus on state within

particular areas of the server the programmer was interested in. This tuning reduced

the size of the output. The programmer found the FlashLight output of this second

run of the server informative.

Feedback we received from the programmer included

• (+) The use of quantums and the flexibility of the aspect-based instrumentation

to tune FlashLight to the target program was considered beneficial. The pro-

grammer reported that other (unnamed) dynamic analysis tools had not been

able to support analysis of the commercial web application server FlashLight

successfully analyzed.

• (-) The FlashLight output for the first run was very slow to render in a web

browser. Taking up to 4 minutes to appear. The programmer, who had spent

two days using the Eclipse-based Fluid assurance tool also wanted to view the

FlashLight results within Eclipse (not using a web browser).

• (-) The slowest portion of the trial and error tuning of FlashLight to the web

application server was the speed of the AspectJ compiler. After adjusting the

definition of an aspect (e.g., to define a quantum or trigger analysis and output)

it took 5 minutes on the laptops being used for the case study to run the AspectJ

compiler over the web application server.

Overall, the programming team of the web application server saw FlashLight as useful

and expressed an interest in further development of the tool (including addressing the

(-) drawbacks listed above). FlashLight had been successful in their environment

where previous dynamic tools they had tried had failed.

77

Table 5.1: This table describes the run-time performance of three programs tested
with FlashLight. The unmodified column reports the amount of wall clock time (in
seconds) required to execute the programs without any instrumentation. The “full
execution” column reports the elapsed time when FlashLight is “on” for the entire
program duration. The last column reports the elapsed time FlashLight actively
collects data for the system. FlashLight’s instrumentation divides the system into
multiple quantum, with some quantum not collecting any data.

System Unmodified Full Execution Quantized Executiona

FleetBaron PlayerUI 37s 55s 47s
FleetBaron Server 51s 69s 61s
jEdit 46s 150s 79s

aQuantized Execution implies program executions is broken into multiple quantum, and assumes
some quantum do not capturing field accesses.

5.4 Runtime Overhead

This section characterizes, based upon our use, the runtime overhead intro-

duced by FlashLight. The dynamic weaving of FlashLight’s instrumentation affects

the program’s execution. What are the significant factors affecting the increase of

system requirements when running FlashLight and how much does FlashLight affect

a program?

The FleetBaron and jEdit case studies were run on an IBM laptop with a 1.6GHz

Pentium 4 processor and with 1GB of memory. We used the Eclipse IDE with the

AspectJ plug-in and a Java 5 JRE.

The runtime overhead introduced by FlashLight on three programs is reported

in Table 5.1. Let us review our jEdit test plan. Because of the GUI driven commands

of jEdit, we developed a test plan allowing us to consistently evaluate the tool from

opening jEdit until termination of the application. The plan consisted of opening a

file, performing a search and replace command, closing the file, and exiting jEdit. Both

operations, the open and close file commands and the search and replace command,

allow FlashLight to capture concurrent field accesses. Admittedly, we could achieve

more accurate results using an automated tool to perform our test plan, however, due

to time constraints, we performed the test plan manually to provide baseline results.

78

Referring to Table 5.1, we see that executing our test plan with an unmodi-

fied version of jEdit took approximately 46 seconds. During our case study, with

FlashLight running, jEdit took approximately 79 seconds to execute the application,

analysis and output the results. As we have discussed, separating an applications into

different quantum can reduce the overhead incurred from FlashLight. We see there is

possible time savings in using multiple quantums by comparing the full and quantized

executions in Table 5.1. We assume, however, the risk of also reducing the accuracy

of the analysis.

There are several scalability challenges for FlashLight. The size of an appli-

cation (i.e. kSLOC) is not the only factor in determining the overhead incurred by

FlashLight. Although jEdit is considerably larger than the FleetBaron server, there is

little difference between the quantized execution times of the systems (Table 5.1). The

size of program (i.e. number of lines of code) is not the sole factor in determining a

programmer’s overhead. A system’s size, the number of fields, and the number of field

accesses are all significant factors in determining the overhead added by FlashLight.

5.5 Summary

Our case studies provide initial evidence that FlashLight is scalable (up to

100kSLOC), is effective in finding race conditions, and assists programmers by pro-

viding suggested lock policy models. The case studies also demonstrated some defi-

ciencies in our early implementation, namely, the format of the results

• The effectiveness of FlashLight was shown in each case study by finding real

race conditions, and suggesting potential lock policy models.

– Faults: Discovered an actual race conditions in jEdit. We realized it took

some time to transition from classifying a field as a potential race, to using

Fluid to show that it was in fact a race condition.

– False Positives: By enhancing the FlashLight lock-set algorithm we re-

duced the number of false positives reported by the tool. Cutting the

79

number of reported races in the FleetBaron server from ∼ 30 fields to 5

fields.

• Our initial output implementation did not provide clear, concise information

degrading the user experience. Through several iterations of the output, we

now report summarized, relevant results. Users can view detail information by

drilling-down into the results using built-in navigation links.

• Our case studies showed FlashLight is capable of working on large applications.

This scalability ensures FlashLight can be used on a wide range of applications.

We used FlashLight on applications up to 100kSLOC, however this is not a firm

boundary. The upper bound of the tool appears to be how long a programmer

wants to wait for the AspectJ compiler. For example, during the commercial

case study the AspectJ compiler took several minutes to compiler code while

Eclipse complied the code in under a minute.

• The case studies also demonstrated FlashLight’s practicality. FlashLight was

used in one commercial, on-site case study conducted by a fellow researcher with

professional programmers. This team focused on the using the Shared State

and Threading Model views generated by FlashLight. The case study team

was excited about FlashLight’s tunability from AspectJ and flexibility because

unlike other dynamic tools, FlashLight executed within their environment, an

application server cluster.

80

VI. Conclusion

Reasoning about Java concurrency is not easy. A lack of understanding of the con-

currency within a system can lead to race conditions and deadlocks. These errors are

difficult to locate and correct. Our dynamic analysis tool, FlashLight, provides one

link in a chain of programmer-oriented tools to safe concurrency. FlashLight locates

shared state, potential race conditions, and suggests possible locking models from the

run-time environment of a program. The suggested locking models can be used with

the Fluid Lock Assurance to assure the code. This combination of dynamic and static

analysis tools creates a powerful toolset for illuminating developers about potential

errors and verifying their code.

6.1 Summary of Contributions

This thesis describes a dynamic analysis tool, named FlashLight, that detects

shared state and potential race conditions within a program. The tool, based upon a

program’s observed locking behavior, also proposes Greenhouse-style [8] lock policy

models that can, after review by a programmer to ensure reasonableness, be assured

by the Fluid assurance tool. Overall, FlashLight is designed and implemented to

help “shed some light” on a programmer’s understanding of the concurrency in a

Java program. It has also been designed to be synergistic with the Fluid assurance

tool—toward the goal of improving the quality of large real-world software system in

a practical manner.

The combination of a dynamic tool with a program verification system focused

on concurrency fault detection and repair is, to the best of our knowledge, novel and

is the primary contribution of this research. A secondary contribution of the work is

the extension of the lock-set analysis algorithm to use quantums. Quantums allow the

programmer to specify one or more “interesting” periods of time during a program’s

execution.

81

6.1.1 Case Studies. We applied FlashLight to a several concurrent Java

programs including educational software, an established open source project, and

a commercial system. Our case studies highlighted several opportunities to improve

FlashLight, such as reducing the number of false positives reported by tuning the lock-

set algorithm used by the tool to support typical Java programming idioms. As part

of our case study, we evaluated the overhead incurred by using FlashLight. During

our trials, the open source text editor jEdit took approximately 1.7 times longer to

execute while being inspected with FlashLight. Our case studies also pointed out the

necessity to revise our output presentation. Significant work was required to make the

outputted web pages understandable and useful. Our case studies highlighted several

serious flaws in our early tool output.

6.2 Looking Ahead

We propose the following improvements to the FlashLight tool:

1. Integrate tool output directly into Eclipse and avoid the intermediate browser

output. This would increase the usability of the tool by making it easier for the

user to see the results in one view opposed to several views.

2. Support better integration with Fluid. Currently, there are only two Fluid

annotations used in the output. The instrumentation could be expanded to

collect more data and allow the analysis to infer more about the developers

intent. In the special case where multiple locks consistently protect a field,

determining which lock is required to protect this field access.

FlashLight illuminates developers on the concurrency within their system. Us-

ing FlashLight in conjunction with the Fluid assurance tool creates a powerful and

practical quality assurance technique aimed at consistently producing better concur-

rent Java code.

82

Bibliography

1. Bierhoff, Kevin and Jonathan Aldrich. “Lightweight object specification with
typestates”. ESEC/FSE-13: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, 217–226. ACM Press, New York, NY, USA,
2005.

2. Boroday, S., A. Petrenko, J. Singh, and H. Hallal. “Dynamic analysis of java
applications for multithreaded antipatterns”. WODA ’05: Proceedings of the
third international workshop on Dynamic analysis, 1–7. ACM Press, New York,
NY, USA, 2005.

3. Choi, Jong-Deok, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek
Sarkar, and Manu Sridharan. “Efficient and precise datarace detection for mul-
tithreaded object-oriented programs”. PLDI ’02: Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implementation,
258–269. ACM Press, New York, NY, USA, 2002.

4. Christiaens, Mark and Koen De Bosschere. “TRaDe, A Topological Approach to
On-the-fly Race Detection in Java Programs”. Proceedings of the Java Virtual
Machine Research and Technology Symposium (JVM’01). USENIX, 1991.

5. Engler, Dawson and Ken Ashcraft. “RacerX: effective, static detection of race
conditions and deadlocks”. SOSP ’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, 237–252. ACM Press, 2003.

6. Goldberg, Allen and Klaus Havelund. “Instrumentation of Java Bytecode for
Runtime Analysis”. FTfJP’03, Fifth ECOOP Workshop on Formal Techniques
for Java-like Programs. 2003.

7. Gosling, James, Bill Joy, Guy L. Steele, and Gilad Bracha. Java Language Spec-
ification. Addison-Wesley, 3nd edition, 2005.

8. Greenhouse, Aaron. A Programmer-Orientated Approach to Safe Concurrency.
Ph.D. thesis, Carnegie Mellon University, May 2003.

9. Greenhouse, Aaron and William L. Scherlis. “Assuring and Evolving Concurrent
Programs: Annotations and Policy”. 24th International Conference on Software
Engineering (ICSE’02), 453–463. ACM Press, May 2002.

10. Havelund, Klaus. “Using Runtime Analysis to Guide Model Checking of Java
Programs”. Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification, 245–264. Springer-Verlag, London, UK, 2000.

11. Holzmann, Gerald. The Spin Model Checker – Primer and Reference Manual.
Addison-Wesley, New York, 2004.

83

12. Kiczales, Gregor, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. “An Overview of AspectJ”. ECOOP ’01: Proceedings of the
15th European Conference on Object-Oriented Programming, 327–353. Springer-
Verlag, London, UK, 2001.

13. Kiczales, Gregor, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented
Programming”. ECOOP ’97: Proceedings of the 11th European Conference on
Object-Oriented Programming, 220–242. Springer-Verlag, 1997.

14. Lamport, Leslie. “Time, clocks, and the ordering of events in a distributed sys-
tem”. Comm. of the ACM, 21(7):558–565, 1978.

15. Lea, Doug. Concurrent Programming in Java. The Java Series. Addison-Wesley,
Reading, Massachusetts, USA, second edition, November 1999.

16. Naumovich, Gleb, George S. Avrunin, and Lori A. Clarke. “An efficient algorithm
for computing MHP information for concurrent Java programs”. ESEC/FSE-
7: Proceedings of the 7th European software engineering conference held jointly
with the 7th ACM SIGSOFT international symposium on Foundations of software
engineering, 338–354. Springer-Verlag, London, UK, 1999.

17. O’Callahan, Robert and Jong-Deok Choi. “Hybrid dynamic data race detection”.
PPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming, 167–178. ACM Press, New York, NY, USA,
2003.

18. von Praun, Christoph and Thomas R. Gross. “Object race detection”. OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, 70–82. ACM Press, New York,
NY, USA, 2001.

19. von Praun, Christoph and Thomas R. Gross. “Static conflict analysis for multi-
threaded object-oriented programs”. PLDI ’03: Proceedings of the ACM SIG-
PLAN 2003 conference on Programming language design and implementation,
115–128. ACM Press, New York, NY, USA, 2003.

20. Savage, Stefan, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. “Eraser: a dynamic data race detector for multi-threaded programs”.
SOSP ’97: Proceedings of the sixteenth ACM symposium on Operating systems
principles, 27–37. ACM Press, 1997.

21. Schonberg, Edith. “On-the-fly detection of access anomalies”. SIGPLAN Not.,
39(4):313–327, 2004.

22. Sestoft, Peter. Java Precisely. The MIT Press, 2nd edition, 2005.

23. Visser, Willem, Klaus Havelund, Guillaume Brat, and SeungJoon Park. “Model
Checking Programs”. ASE ’00: Proceedings of the 15th IEEE international con-

84

ference on Automated software engineering, 3. IEEE Computer Society, Washing-
ton, DC, USA, 2000.

85

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2006 Master’s Thesis Jun 2004 — Mar 2006

FlashLight:
A Dynamic Detector of Shared State, Race Conditions,

and Locking Models in Concurrent Java Programs

Hale, Scott, C., Captain, USAF

Air Force Institute of Technology (AFIT/EN)
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/06-08

Mr. William B. Martin
Chief, High Confidence Software and Systems Division Information Assurance
Research Group National Security Agency
9800 Savage Road e-mail: wbmarti@alpha.ncsc.mil
Fort George G. Meade, MD 20755-6511 comm: (301) 688-1057

Approved for public release; distribution unlimited.

Concurrent Java programs are difficult to understand and implement correctly. This difficultly leads to
code faults that are the source of many real-world reliability and security problems. Many factors contribute to
concurrency faults in Java code; for example, programmers may not understand Java language semantics or, when using
a Java library or framework, may not understand that their resulting program is concurrent.

This thesis describes a dynamic analysis tool, named FlashLight, that detects shared state and possible race
conditions within a program. FlashLight illuminates the concurrency within a program for programmers that are
wholly or partially “in the dark” about their software’s concurrency. FlashLight also works in concert with the Fluid
assurance tool to, based upon a program’s observed locking behavior, propose lock policy models. After review by a
programmer to ensure reasonableness, these models can be verified by the Fluid assurance tool. Our combination of a
dynamic tool with a program verification system focused on concurrency fault detection and repair is, to the best of our
knowledge, novel and is the primary contribution of this research.

Java Programming Language, Concurrency, Dynamic Analysis, Race Condition Detection, Software Engineering,
Software Tools, Computer Programming and Software

U U U UU 100

Maj Robert P. Graham, Jr., (AFIT/ENG)

937-255-3636, ext. 7256 (robert.graham@afit.edu)

